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Why Modern CPUs Are stArving
And WhAt CAn Be done ABoUt it
By Francesc Alted

A well-documented trend shows 
that CPU speeds are in-
creasing at a faster rate than 

memory speeds.1,2 Indeed, CPU per-
formance has now outstripped mem-
ory performance to the point that 
current CPUs are starved for data, 
as memory I/O becomes the perfor-
mance bottleneck.

This hasn’t always been the case. 
Once upon a time, processor and 
memory speeds evolved in parallel. 
For example, memory clock access in 
the early 1980s was at approximately 
1 MHz, and memory and CPU speeds 
increased in tandem to reach speeds 
of 16 MHz by decade’s end. By the 
early 1990s, however, CPU and mem-
ory speeds began to drift apart: mem-
ory speed increases began to level off, 
while CPU clock rates continued to 
skyrocket to 100 MHz and beyond. 
It wasn’t too long before CPU capa-
bilities began to substantially outstrip 
memory performance. Consider this: a 
100 MHz processor consumes a word 
from memory every 10 nanoseconds 
in a single clock tick. This rate is im-
possible to sustain even with present-
day RAM, let alone with the RAM 
available when 100 MHz processors 
were state of the art. To address this 
mismatch, commodity chipmakers in-
troduced the first on-chip cache. 

But CPUs didn’t stop at 100 MHz; by 
the start of the new millennium, pro-
cessor speeds reached unparalleled ex-
tremes, hitting the magic 1 GHz figure. 

As a consequence, a huge abyss opened 
between the processors and the memory 
subsystem: CPUs had to wait up to 50 
clock ticks for each memory read or 
write operation.

During the early and middle 2000s, 
the strong competition between Intel 
and AMD continued to drive CPU 
clock cycles faster and faster (up to 4 
GHz). Again, the increased impedance 
mismatch with memory speeds forced 
vendors to introduce a second-level 
cache in CPUs. In the past five years, 
the size of this second-level cache 
grew rapidly, reaching 12 Mbytes in 
some instances.

Vendors started to realize that they 
couldn’t keep raising the frequency 
forever, however, and thus dawned 
the multicore age. Programmers be-
gan scratching their heads, wondering 
how to take advantage of those shiny 
new and apparently innovative multi-
core machines. Today, the arrival of 
Intel i7 and AMD Phenom makes 
four-core on-chip CPUs the most 
common configuration. Of course, 
more processors means more demand 
for data, and vendors thus introduced 
a third-level cache.

So, here we are today: memory la-
tency is still much greater than pro-
cessor clock step (around 150 times 
greater or more) and has become an 
essential bottleneck over the past 20 
years. Memory throughput is improv-
ing at a better rate than its latency, 
but it’s also lagging behind processors 

(about 25 times slower). The result is 
that current CPUs are suffering from 
serious starvation: they’re capable of 
consuming (much!) more data than 
the system can possibly deliver.

The Hierarchical 
Memory Model
Why, exactly, can’t we improve mem-
ory latency and bandwidth to keep 
up with CPUs? The main reason is 
cost: it’s prohibitively expensive to 
manufacture commodity SDRAM 
that can keep up with a modern pro-
cessor. To make memory faster, we 
need motherboards with more wire 
layers, more complex ancillary logic, 
and (most importantly) the ability to 
run at higher frequencies. This addi-
tional complexity represents a much 
higher cost, which few are willing to 
pay. Moreover, raising the frequency 
implies pushing more voltage through 
the circuits. This causes the energy 
consumption to quickly skyrocket and 
more heat to be generated, which re-
quires huge coolers in user machines. 
That’s not practical.

To cope with memory bus limita-
tions, computer architects introduced 
a hierarchy of CPU memory caches.3

Such caches are useful because they’re 
closer to the processor (normally in 
the same die), which improves both la-
tency and bandwidth. The faster they 
run, however, the smaller they must 
be due mainly to energy dissipation 
problems. In response, the industry 

CPUs spend most of their time waiting for data to arrive. Identifying low-level bottlenecks—and how to 
ameliorate them—can save hours of frustration over poor performance in apparently well-written programs. 
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implemented several memory lay-
ers with different capabilities: lower-
level caches (that is, those closer to 
the CPU) are faster but have reduced 
capacities and are best suited for per-
forming computations; higher-level 
caches are slower but have higher ca-
pacity and are best suited for storage 
purposes.

Figure 1 shows the evolution of 
this hierarchical memory model over 
time. The forthcoming (or should I 
say the present?) hierarchical model 
includes a minimum of six memory 
levels. Taking advantage of such a 
deep hierarchy isn’t trivial at all, and 
programmers must grasp this fact 
if they want their code to run at an 
acceptable speed.

Techniques to Fight 
Data Starvation 
Unlike the good old days when the 
processor was the main bottleneck, 
memory organization has now be-
come the key factor in optimization. 
Although learning assembly language 
to get direct processor access is (rela-
tively) easy, understanding how the 
hierarchical memory model works—
and adapting your data structures 
accordingly—requires considerable 
knowledge and experience. Until we 
have languages that facilitate the de-
velopment of programs that are aware 

of memory hierarchy (for an example 
in progress, see the Sequoia project 
at www.stanford.edu/group/sequoia), 
programmers must learn how to 
deal with this problem at a fairly low 
level.4

There are some common techniques 
to deal with the CPU data-starvation 
problem in current hierarchical mem-
ory models. Most of them exploit the 
principles of temporal and spatial 
locality. In temporal locality, the target 
dataset is reused several times over 
a short period. The first time the 
dataset is accessed, the system must 
bring it to cache from slow memory; 
the next time, however, the processor 
will fetch it directly (and much more 
quickly) from the cache.

In spatial locality, the dataset is ac-
cessed sequentially from memory. In 
this case, circuits are designed to fetch 
memory elements that are clumped 
together much faster than if they’re 
dispersed. In addition, specialized 
circuitry (even in current commodity 
hardware) offers prefetching—that is, 
it can look at memory-access patterns 
and predict when a certain chunk of 
data will be used and start to trans-
fer it to cache before the CPU has 
actually asked for it. The net result is 
that the CPU can retrieve data much 
faster when spatial locality is properly 
used.

Programmers should exploit the op-
timizations inherent in temporal and 
spatial locality as much as possible. 
One generally useful technique that 
leverages these principles is the block-
ing technique (see Figure 2). When 
properly applied, the blocking tech-
nique guarantees that both spatial and 
temporal localities are exploited for 
maximum benefit.

Although the blocking technique 
is relatively simple in principle, it’s 
less straightforward to implement 
in practice. For example, should the 
basic block fit in cache level one, 
two, or three? Or would it be bet-
ter to fit it in main memory—which 
can be useful when computing large, 
disk-based datasets? Choosing from 
among these different possibilities 
is difficult, and there’s no substitute 
for experimentation and empirical 
analysis.

In general, it’s always wise to use 
libraries that already leverage the 
blocking technique (and others) for 
achieving high performance; exam-
ples include Lapack (www.netlib.org/
lapack) and Numexpr (http://code.
google.com/p/numexpr). Numexpr is 
a virtual machine written in Python 
and C that lets you evaluate poten-
tially complex arithmetic expressions 
over arbitrarily large arrays. Using the 
blocking technique in combination 

figure 1. Evolution of the hierarchical memory model. (a) the primordial (and simplest) model; (b) the most common current 
implementation, which includes additional cache levels; and (c) a sensible guess at what’s coming over the next decade: 
three levels of cache in the CPU and solid state disks lying between main memory and classical mechanical disks.
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with a specialized, just-in-time ( JIT) 
compiler offers a good balance between 
cache and branch prediction, allowing 
optimal performance for many vector 
operations. However, for expressions 
involving matrices, Lapack is a better 
fit and can be used in almost any lan-
guage. Also, compression is another 
field where the blocking technique 
can bring important advantages (see 
the sidebar, “Compression and Data 
Access”).

Enter the Multicore Age
Ironically, even as the memory 
subsystem has increasingly lagged 
behind the processor over the past 
two decades, vendors have started to 
integrate several cores in the same 
CPU die, further exacerbating the 
problem. At this point, almost ev-
ery new computer comes with sev-
eral high-speed cores that share a 
single memory bus. Of course, this 
only starves the CPUs even more as 

several cores fight for scarce memory 
resources. To make this situation 
worse, you must synchronize the cach-
es of different cores to ensure coherent 
access to memory, effectively increas-
ing memory operations’ latency even 
further.

To address this problem, the in-
dustry introduced the nonuniform 
memory access (NUMA) architec-
ture in the 1990s. In NUMA, dif-
ferent memory banks are dedicated 
to different processors (typically in 
different physical sockets), thereby 
avoiding the performance hit that 
results when several processors at-
tempt to address the same memory 
at the same time. Here, processors 
can access local memory quickly and 
remote memory more slowly. This 
can dramatically improve memory 
throughput as long as the data is 
localized to specific processes (and 
thus processors). However, NUMA 
makes the cost of moving data from 
one processor to another signifi-
cantly more expensive. Its benefits 
are therefore limited to particular 
workloads—most notably on serv-
ers where the data is often associated 
with certain task groups. NUMA is 
less useful for accelerating parallel 
processes (unless memory access is 
optimized). Given this, multicore/
NUMA programmers should realize 
that software techniques for improv-
ing memory access are even more 
important in this environment than 
in single-core processing. 

figure 2. the blocking technique. the blocking approach exploits both spatial and 
temporal localities for maximum benefit by retrieving a contiguous block that fits 
into the CPU cache at each memory access, then operates upon it and reuses it as 
much as possible before writing the block back to memory.
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over the past 10 years, it’s been standard practice to 
use compression to accelerate the reading and writing 

of large datasets to and from disks. optimizations based  
on compression leverage the fact that it’s generally faster 
to read and write a small (compressed) dataset than a  
larger (uncompressed) one, even when accounting for  
(de)compression time. So, given the gap between proces-
sor and memory speed, can compression also accelerate 
data transfer from memory to the processor?

the new blocking, shuffling, and compression (Blosc)  
library project uses compression to improve memory-access 
speed. Blosc is a lossless compressor for binary data that is 
optimized for speed rather than high compression ratios.  

It uses the blocking technique (which I describe in the 
main text) to reduce activity on the memory bus as much 
as possible. In addition, the shuffle algorithm maximizes 
the compression ratio of data stored in small blocks.

As preliminary benchmarks show, for highly compress-
ible datasets, Blosc can effectively transmit compressed 
data from memory to CPU faster than it can transmit 
uncompressed data (see www.pytables.org/docs/ 
StarvingCPUs.pdf). However, for datasets that compress 
poorly, transfer speeds still lag behind those of uncom-
pressed datasets. As the gap between CPU and memory 
speed continues to widen, I expect Blosc to improve 
memory-to-CPU data transmission rates over an increasing 
range of datasets. You can find more information about 
Blosc at http://blosc.pytables.org.
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CPUs and GPUs: 
Bound to Collaborate
Multicores aren’t the latest challenge 
to memory access. In the last few 
years, Nvidia suddenly realized that 
its graphics cards (also called graph-
ics processing units, or GPUs) were 
in effect small parallel supercomput-
ers. The company therefore took the 
opportunity to improve the GPUs’ 
existing shaders—used primarily 
to calculate rendering effects—and 
convert them into “stream” or thread 
processors. They also created the 
Compute Unified Device Architec-
ture (CUDA),5 a parallel program-
ming model for GPUs that has proven 
to be so popular that a new standard, 
OpenCL (www.khronos.org/opencl), 
quickly emerged to help any hetero-
geneous mix of CPUs and GPUs in 
a system work together to solve prob-
lems faster.

You can seamlessly integrate the 
current generation of GPUs to run 
tens of thousands of threads simulta-
neously. Regarding the starving cores 
problem, you might wonder whether 
GPUs have any practical utility what-
soever given the memory bottleneck 
or whether they’re mostly marketing 
hype.

Fortunately, GPUs are radically 
different beasts than CPUs and tra-
ditional motherboards. One of the 
critical differences is that GPUs 
access memory over much better 
bandwidth (up to 10 times faster 
in some cases). This is because a 
GPU is designed to access memory 
in parallel over independent paths. 
One problem with this design, how-
ever, is that to take advantage of 
the tremendous bandwidth, all the 
available memory has to run at very 
high frequencies—effectively limit-
ing the total amount of high-speed 
memory (up to 1 Gbyte on most 

current cards). In contrast, current 
commodity motherboards are de-
signed to address a much greater 
amount of memory (up to 16 Gbytes 
or more).

You can compensate for the fact 
that GPUs access less memory 
(albeit at much faster speeds) by using 
new programming paradigms—such 
as OpenCL—that effectively com-
bine GPUs with CPUs (which access 
much more memory at lower speeds). 
Of course, many problems remain 
to be solved before this combination 
is truly effective, from implement-
ing specific hardware to enhance 
the CPU-to-GPU communication 
latency and bandwidth to developing 
new software that allows program-
mers to take advantage of this new 
computational model. Only time will 
tell whether this approach becomes 
mainstream, but both hardware and 
software developers are investing 
considerable effort in exploring it (see 
www.nvidia.com/object/cuda_home.
html#).

T he gap between CPU and mem-
ory speeds is enormous and 

will continue to widen for the fore-
seeable future. And, over time, an 
increasing number of applications 
will be limited by memory access. 
The good news is that chip manu-
facturers and software developers 
are creating novel solutions to CPU 
starvation.

But vendors can’t do this work 
alone. If computational scientists 
want to squeeze the most perfor-
mance from their systems, they’ll 
need more than just better hardware 
and more powerful compilers or 
profilers—they’ll need a new way to 
look at their machines. In the new 
world order, data arrangement, not 

the code itself, will be central to 
program design.
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