
1

MCC-DB: Minimizing Cache Conflicts in Multi-
core Processors for Databases

Rubao Lee1,2 Xiaoning Ding2 Feng Chen2

Qingda Lu3 Xiaodong Zhang2

1Inst. of Computing Tech., Chinese Academy of Sciences
2Dept. of Computer Sci & Eng., The Ohio State University

3Systems Software Lab., Intel Cooperation

Parallel Computing

2
2

R&D of Database Systems Have Been Driven by Moore’s Law

IEEE Spectrum, May 2008

dropping DRAM price
from 400 $/MB
to 0.09 ¢/MB

Parallel RDBMS
DIRECT, Gamma,

Paradise, …

R&D of RDBMS to effectively utilize multi-cores

1970
Relational Data Model

1976:
System R & Ingres

Memory wall

Multi-cores

Cache-Optimized RDBMS
MonetDB, StageDB,EaseDB …

After 10,000 time increase in clock rate (400KHz in
1971 to 4GHz, in 2005), we have entered multi-core

era by increasing # cores with low clock rate.

3

A Multi-core Processor Provides Shared Hardware Resources

Intel Nehalem

Core 0 Core 1 Core 2 Core 3

Shared Last-Level Cache (LLC)
LLC utilization is critical to overall

execution performance.

BUS

Core 1 Core 2

Shared LLC

MEM

4

The Shared LLC is a Double-edge Sword!

shared data

Good News Bad News

Hit!

BUS

Core 1 Core 2

Shared LLC

MEM

private data
of core 1

private data
of core 2

Miss!

Reload!

Cache

Conflicts!

Constructive

Data Sharing

Huge
Fact
Table

5

A Motivating Example: Hash Join and Index Join

p_partkey = lo_partkey⋈
Lineorder Part

Small
Dimention
Table

The query is based on the
Star Schema Benchmark.

One-time
access

index
join

lineorder

part

B+ Tree

lineorder

part

hash
join

Hash
table

One-time
access

One-time
access

random
index

lookups

seldom
data
reuse

The working set
very frequently accessed

How can they utilize the shared cache

when running alone or together?

6

L2 Miss Rates of Co-running Hash Join and Index Join

L2 Miss Rate

6%

28%

37% 39%

Hash
join

Index
join

Index
join

Hash
join

Hardware: Core2Quad Xeon X5355 (4MB L2$ for two cores)

OS: Linux 2.6.20 DBMS: PostgreSQL 8.3.0 Tool: Perfmon2

running alone
co-running with

each other

(1)Totally different
cache behaviors

(2) Hash Join: Query
execution time is

increased by 56%!

(3) Index Join: Only slightly
performance degradation

Challenges of DBMS running on Multi-core

• DBMSs have successfully been developed in an
architecture/OS-independent mode

Buffer pool management (bypassing OS buffer cache)

Tablespace on raw device (bypassing OS file system)

DBMS threads scheduling and multiplexing

• DBMSs are not multicore-aware

Shared resources, e.g. LLC, are managed by CPU and OS.

Interferences of co-running queries are out of DBMS control

 Locality-based scheduling is not automatically handled by OS

Operating
System

8

Who Knows What?

Q1 Q2

DBMS

core core

Shared LLC

PLAN PLAN

Access Patterns of Data
Objects (Tuples,
Indices, Hash

Tables, …)

Cache Set Index

Physical Memory
Address

Physical Memory
Address

Virtual Address

Cache Allocation

Hardware Control

Memory Allocation
How can we leverage the DBMS knowledge of query

execution to guide query scheduling and cache allocation?
data

objects

The three parties are DISCONNECTED!
DBMS doesn’t know cache allocation. OS and Chip don’t know data access patterns.

The problem: cache conflicts due to lack of knowledge of query executions

Operating
System

9

Our Solution: MCC-DB

Q1 Q2

DBMS

core core

Shared LLC

PLAN PLAN

Access Patterns of Data
Objects (Tuples,
Indices, Hash

Tables, …)

Cache Set Index

Physical Memory
Address

Physical Memory
Address

Virtual Address

Cache Allocation

Hardware Control

Memory Allocation

Objectives : Multicore-Aware DBMS with communication
and cooperation among the three parties.

data

objects

10

Outlines

• The MCC-DB Framework

– Sources and types of cache conflicts

– Three components of MCC-DB

– System issues

– Implementation in both PostgreSQL and Linux kernel

• Performance Evaluation

• Conclusion

10

11

Sources and Types of Cache Conflicts

1. Private data structures during query executions (cannot be shared by multi-cores)
2. Different cache sensitivities among various query plans
3. Inability to protect cache-sensitive plans by the LRU scheme
4. Limited cache space cannot hold working sets of co-running queries.

The locality strength of a query plan is determined by its

data access pattern and working set size.

Strong locality

Small working set size (relative to cache size),
which is frequently accessed

Moderate Locality

working set size comparable with cache size,
which is moderately accessed

Weak Locality

seldom data reuse, one-time accesses, which
has a large volume.

Capacity Contention

Cache Pollution

12

Core Core

MCC-DB: A Framework to Minimize Cache Conflicts

Q Q

Query Optimizer

Shared Last Level Cache

Execution Scheduler

Q

Cache partitioning

by OS

DBMS

OS ARCHITECTURE

1: which
plan?
2: co-schedule?

3: cache
allocation?

1: which
plan?2: co-schedule?

3: cache
allocation?

The locality strength is the key!

…

…

13

Critical Issues

How to estimate the locality strength of a query plan? (in
DBMS domain)

How to determine the policies for query execution co-
scheduling and cache partitioning? (in DBMS domain and
interfacing to OS)

How to partition the shared LLC among multiple cores in
an effective way? (in OS multicore processor domain)

Locality Estimation for Warehouse Queries

The figure is from Star Schema
Benchmark, Pat O’Neil, Betty O’Neil,
Xuedong Chen, UMass/Boston

87% to 97% of the execution times are spent on
executing multi-way joins

Agg

Join (hash/index)

Table

1: Huge fact table and small dimension tables

3: aggregations and grouping after joins

2: equal-join on key-foreign key relationships

We only consider the first two-
level joins for locality

estimation (aggregated hash
table size).

Only 0.96%~3.8% of fact
table tuples can reach the

third level join.

Locality Estimation of Join Operators
Index join is estimated to have weak locality due to random
index lookups on the huge fact table.
Hash join is estimated to have strong, moderate, or weak
locality, according to its hash table size (see papers for the
details).

15

Interference between Queries with Different Localities
The figure is only a part of the experimental result for measuring performance

degradations when co-running various hash joins and index joins (see papers!).

hash join affected by index join

hash join affected by hash join

index join affected by index join

0

10

20

30

40

50

60

0.4 0.8 1.1 1.5 1.9

Hash Table Size (MB)

P
e
r
f
o
r
m
a
n
c
e

D
e
g
r
a
d
a
t
i
o
n
s

(
%
)

A weak-locality
query has stably
low performance

degradations.

Safe! Co-running strong-
locality queries don’t raise
capacity contention.

A Moderate-locality query suffers
from capacity contention.

A weak-locality query can
easily cause cache pollution.

Cache pollution is much
more harmful than
capacity contention!

16

Cache Conflicts

Cache pollution:

A weak-locality plan (a large volume of one-time accessed data sets)
can easily pollute the shared cache space.

Capacity contention:

Co-running moderate-locality plans compete for the shared cache
space, and misses are due to limited space.

Cache pollution is more damaging than capacity contention! (useful
data objects are replaced by one-time accessed ones)

Capacity contention cannot be removed (limited cache space), but
cache pollution can be (cache partitioning)!

17

Page Coloring for Cache Partitioning

virtual page numberVirtual address page offset

physical page numberPhysical address Page offset

Address translation

Cache tag Block offsetSet indexCache address

Physically indexed cache

page color bits

… …

OS control

=

•Physically indexed caches are divided into multiple regions (colors).

•All cache lines in a physical page are cached in one of those regions (colors).

OS can control the page color of a virtual page through address mapping

(by selecting a physical page with a specific value in its page color bits).

18

Shared LLC can be partitioned into multiple regions

… …

...

……
…

……
…

Physically indexed cache

…
……

……
…

Physical pages are grouped to different
bins based on their page colors1

2
3
4

…

i+2

i
i+1

…

Process 1

1
2
3
4

…

i+2

i
i+1

…

Process 2

O
S
 a

d
d
re

s
s
 m

a
p
p
in

g

Shared cache is partitioned between two processes through OS address

Main memory space needs to be partitioned too (co-partitioning).

Scheduling with/without cache partitioning

Scheduling without cache partitioning: a DBMS-only effort

SLS: co-scheduling query plans with the same locality strength.

(1) Low interference between weak-locality plans

(2) Avoid cache pollution by not co-running them together

(3) Cache allocation is not applied: performance is sub-optimal

Scheduling with cache partitioning: DBMS + OS efforts.

MLS: co-scheduling query plans with mixed locality strengths.

(1) Eliminate cache pollution by limiting the cache space for
weak-locality queries

(2) Avoid capacity contention by allocating space to each query
according to their need.

20

The Effectiveness of Cache Partitioning

32 24 16 8 4
0%

10%

20%

30%

40%

32 24 16 8 4
0

20

40

60

80

LLC space to index Join query LLC space to Index Join query

L2 Miss Rate Query Execution Time (s)

co-running a hash join (strong/moderate locality) and an index join (weak
locality)

Reducing the cache space to the index join operators

Index Join

Hash Join

Cache Partitioning

Maxmizing performance of strong/moderate-locality query without
slowing down of the weak-locality query

4MB 3MB 2MB 1MB 0.5MB 4MB 3MB 2MB 1MB 0.5MB

21

SLS (DB scheduling only) vs MLS (DB scheduling OS partitioning)
co-running hash joins with different hash table sizes and index joins

How the performance degradations of hash joins can be reduced?

0%

10%

20%

30%

40%

50%

60%

0.78MB 2.26MB 4.10MB 8.92MB
HashTableSize

SLS: reducing performance degradations of hash joins when
capacity contention is less significantly (small hash tables)!MLS: Minimizing cache conflicts needs

both scheduling and partitioning!

SLS: small
benefit!

large hash tables

Worst case

Cache pollution

Only scheduling

Capacity contention

Scheduling+Partitioning

Minimize cache conflicts

P
e
rf

o
rm

a
n
c
e
 d

e
g
ra

d
a
ti
o
n
s
 c

o
m

p
a
re

d

w
it
h
 t

h
e
 c

a
s
e
 o

f
ru

n
n
in

g
 a

lo
n
e

Performance degradations compared
with the case of running alone

222222

Summary

• Multicore Shared LLC is out of the DBMS management
– Causing cache pollution related conflicts
– Under- or over-utilizing cache space
– Significantly degrading overall DBMS execution performance

• MCC-DB makes collaborative efforts between DBMS & OS
– Make query plans with mixed locality strengths
– Schedule co-running queries to avoid capacity and conflict misses
– Allocating cache space according to demands
– All decisions are locality centric

• Effectiveness is shown by experiments on warehouse DBMS

• MCC-DB methodology and principle can be applied to a
large scope of data-intensive applications

22

23

