LIRS: Low Inter-reference Recency Set
Replacement for VM and Buffer Caches

Xlaodong Zhang
Ohio State University

In collaborations with
Song Jiang (Wayne State University)

|east Recent Used (LRU) Replacement

* LRU is most commonly used replacement for data management.

* Blocks are ordered by recency in the LRU stack.

 Blocks enter from the top, and leave from bottom,

The stack is [long, the bottom is the
only exit.

A block evicted from the
bottom of the stack should

have been evicted much
earlier !

“-..“

D

‘e = =
*

Cans?

The Problem of LRU Replacement

Inability to cope with weak access locality

« File scanning: one-time accessed blocks are not replaced
timely; (e.g. 50% disk data in NCAR only used once).

« Loop-like accesses: blocks to be accessed soonest can be
unfortunately replaced,

« Accesses with distinct frequencies: Frequently accessed
blocks can be unfortunately replaced.

Reasons for LRU to Fail but Powerful

®* Why LRU fails sometimes?

- A recently used block will not necessarily be used again
or soon.

 The prediction Is based on a single source information.
* Why It Is so widely used?

e Simplicity: an easy and simple data structure.

® Works well for accesses following LRU assumption.

The Challenges of Addressing the LRU problem

Two types of efforts to improve/replace LRU have been made:

- Case by case; or

» Building complex structure with high runtime overhead

Our contributions in SIGMETRICS’02 (Jiang and Zhang)
- Address the limits of LRU fundamentally.

- Retain the low overhead and strong locality merits of LRU.

- Widely adopted in buffer management in production systems.

Related Work

o Aided by user-level hints
« Application-hinted caching and prefetching [OSDI, SOSP, ...]
« rely on users understanding of data access patterns.

« Detection and adaptation of access regularities

« SEQ, EELRU, DEAR, AFC, UBM [OSDI, SIGMETRICS ...]
« case-by-case oriented approaches

o Tracing and utilizing deeper history information
. LRFU, LRU-k, 2Q, ARC (VLDB, SIGMETRICS, SIGMOD, FAST ...)
« Implementation, runtime overhead, and suboptimal performance

Inter-Reference Recency (IRR)

IRR (= reuse distance”, 1970) of a block: the number of other unique
blocks accessed between two consecutive references to the block.

Recency: the number of other unique blocks accessed from last reference

to the current time.
IRR=3 / R

1234315675

L RU-2=IRR+R=6

2

kOO0

s000

Logical Block Number

1000

Diverse Locality Patterns on Access Map

multi2 (cs+ocpp+ps)

4000

3000 ¢

2000

one-time
accesses

[strong locality]

10000 15000 20000 25000 30000

Virtual Time (Reference Stream)

Locality Quantification Limit in LRU Stack

 Blocks are ordered by recency;

* Blocks enter from the stack top, and leave from its bottom;

-3 4 4353

>
Relency =1

Reiency =2

L

LRU stack

PEOEOE

LRU Stack

 Blocks are ordered by recency in the LRU stack;

* Blocks enter from the stack top, and leave from its bottom;

-3
>

@POEOOO®E

R =2,
3 4

Recefcy = 0

Recency = 2

1

Inter-Reference Recency (IRR)
The number of other unique blocks
accessed between two consecutive
references to the block.

Locality Strength

Locality
MULTI2 Strength
2 7000 .
LRU holds frequently accessed blocks with -
“absolutely” strong locality. .

holds one-time accessed blocks (0 locality)

Likely to replace other relatively strong locality blocks

0 ey, % ¢ ¥
O =000 3, . * e i
2] -~ m ,
i . . v .
& 3 ‘¥ - :
~ 1000
o .
i 5000 10000 15000 20000 25000 30000

Virtual Time (Reference Stream)

IRR (Re-use Distance in Blocks)

Looking for Blocks with Strong Locality

=

MULTI2
7000 ' Locality
Strength
BOOO | © .
. L]
Holds strong locality K
blocks (ranked by . <2 .o
reuse distance) X il ='R"
) "

3000

2000

1000 +

. Ty e oy M '-H. ‘l
] S000 10000 15000 20000 25000

Virtual Time (Reference Stream)

30000

Basic Ideas of LIRS

A high reuse distance (IRR) block is not used often.

« High IRR blocks are selected for replacement.
Recency Is used as a second reference.
LIRS: Low Inter-reference Recency Set algorithm

« Keep Low reuse distance (IRR) blocks in buffer cache.
Foundations of LIRS:

« effectively use multiple sources of access information.
« Responsively determine and change the status of each block.
o Low cost implementations.

Data Structure: Keep LIR Blocks in Cache

Low IRR (LIR) blocks and High IRR (HIR) blocks

Block .
Sets Ph))/SIcaJ Cache
LIR block set .
Ljirs Cache size
> L = Liirs + Lhirs
/R [

HIR block
set

Replacement Operations of LIRS

Liirs=2, Lpir=1
Vtime / 1 2 3 4 5 6 7 8 9 10 R IRR
Blocks
LIR — A X X X 1 1
LIR — B X X 3 1
C X 4 inf
D X X 2 3
HIR — E X 0 inf

LIR block set = {A, B}, HIR blockset={C, D, E}
E becomes a resident HIR determined by its low recency

Which Block is replaced ? Replace an HIR Block

D is referenced at time 10

Vtime/, 1 2 3 4 5 6 7 8 9 10 R IRR
Blocks

A K X K 1

X X 3 1
C K 4 inf
D K | K 0 3
replaced — -::E: X 1 Inf

The resident HIR block E is replaced !

How Is LIR Set Updated? LIR Block Recency Is Used

Vtime / 1 2 3 4 5 6 7 8 9 10 R IRR
Blocks

(» X Xreere X 2 L
Keeerr X 31
C X 4 inf
© X X x o 24"
X 1 inf

Which set, HIR or LIR should D belong to?
Compare its IRR with recency of LIR.
Recency reflects the most updated status.

After D Is Referenced at Time 10

Vtime/ 1 2 3 4 5 6 7 8 9 10 R IRR

Blocks
LIR— @ X X.....X 2 1
HIR — ‘ X X 3 1
x 4 inf
LIR— @ X X X 0 2
X 1 Inf

D enters LIR set, and B 1s demoted to HIR set
Because D's IRR< Rmax in LIR set

The Power of LIRS Replacement

Capability to cope with weak access locality

 File scanning: one-time access blocks will be replaced
timely; (due to their high IRRs)

» Loop-like accesses: blocks to be accessed soonest will
NOT be replaced; (due to an MRU effect of HIR blocks)

« Accesses with distinct frequencies: Frequently accessed
blocks in short reuse distance will NOT be replaced.
(dynamic status changes)

LIRS Efficiency: O(1)

IRR Hir Rmax
(New IRR of a (Maximum Recency of LIR
HIR block) blocks)

Can O(LIRS) = O(LRU) = O(1)?
YES! this efficiency Is achieved by our LIRS stack.
 Both recencies and useful IRRs are automatically recorded.

« Rmax of the block in the stack bottom is larger than IRRs of others.

* No comparison operations are needed.

LIRS Operations

« Initialization: All the referenced blocks are given an
LIR status until LIR block set is full.

We place resident HIR blocks in a small LRU Stack.

» Upon accessing an LIR block (a hit)
« Upon accessing a resident HIR block (a hit)

 Upon accessing a non-resident HIR block (a miss)

@EEEOOE®

LIRS stack

resident in cache
O LIRblock

O HIR block
Cache size
L=5
Liir =3
Lhir =2

®
®

Access an LIR Block (a Hit)
-5 9 75 3 8 4

>

resident in cache
O LIRblock

O HIR block
Cache size
L=5
Liir =3
Lhir =2

OOEOEO®OE®

©©

Access an LIR Block (a Hit)

-3 9 7 5 3 8

>

OOEOOOO®

©©

resident in cache

O LIRblock
O HIR block

Cache size
L=5
Liir = 3
Lhir =2

Access an LIR block (a Hit)

-3 9 7 5 3 8

>

CIOICI000I00

©©

resident in cache

O LIRblock
O HIR block

Cache size
L=5
Liir = 3
Lhir =2

Access a Resident HIR Block (a Hit)

-5 9 7 5 3

>

OOOOOOE

©©

resident in cache

O LIRblock
O HIR block

Cache size
L=5
Liir = 3
Lhir =2

Access a Resident HIR Block (a Hit)

-5 9 7 5 3

0 ®OO®

resident in cache
O LIRblock

O HIR block
Cache size
L=5
Liir =3
Lhir =2

Access a Resident HIR Block (a Hit)

-5 9 7 5 3

CIOICI000,

resident in cache
O LIRblock

O HIR block
Cache size
L=5
Liir =3
Lhir =2

Access a Resident HIR Block (a Hit)

-5 9 7 5

OO
©®

resident in cache

O LIRblock
O HIR block

Cache size
L=5
Liir = 3
Lhir =2

Access a Non-Resident HIR block (a Miss)
5 9 7

resident in cache
O LIRblock

O HIR block
Cache size
L=5
Liir =3
Lhir =2

OO
O,

Access a Non-Resident HIR block (a Miss)

resident in cache
O LIR block
O HIR block
Cache size
L=5
Liir =3
Lhir =2

@O

OO

Access a Non-Resident HIR block (a Miss)
- D

resident in cache
O LIRblock

O HIR block
Cache size
L=5
Liir =3
Lhir =2

OOOEOE®

O,

Access a Non-Resident HIR block (a Miss)

resident in cache
O LIRblock

O HIR block
Cache size
L=5
Liir =3
Lhir =2

CONCIO0

©®

LIRS Stack Simplifies Replacement

Recency Is ordered in stack with Rmax LIR block in bottom

No need to keep track of each HIR block s IRR because

« A newly accessed HIR block's IRRs in stack = recency < Rmax.
A small LRU stack Is used to store resident HIR blocks.
Additional operations of pruning and demoting are constant.

Although LIRS operations are much more dynamic than
LRU, its complexity is identical to LRU.

Performance Evaluation

» Trace-driven simulation on different patterns shows

o LIRS outperforms existing replacement algorithms in
almost all the cases.

« The performance of LIRS is not sensitive to its only
parameter Lhirs.

» Performance is not affected even when LIRS stack size Is
pounded.

« The time/space overhead is as low as LRU.
« LRU can be regarded as a special case of LIRS.

Selected Workload Traces

- 2-pools is a synthetic trace to simulate the distinct frequency case.

 cpp Is a GNU C compiler pre-processor trace

* CS IS an Interactive C source program examination tool trace.

* glimpse is a text information retrieval utility trace.

e [ink 1s a UNIX link-editor trace.

* postgres is a trace of join queries among four relations in a relational database system
e sprite is from the Sprite network file system

« mulitl: by executing 2 workloads, cs and cpp, together.

» multi2: by executing 3 workloads, cs, cpp, and postgres, together.

» multi3: by executing 4 workloads, cpp, gnuplot, glimpse, and postgres, together

(1) various patterns, (2) non-regular accesses, (3) large traces.

Looping Pattern: postgres (Time-space map)

postgres

3500

3000 ¢ /
2500 ¢
E
2 2000 f
&
w 16500 |
g / /

1000 / / /

/ / /
/ / / / / /
500 | y / / /
NS / A0 // e
0 2000 4000 5000 5000 10000 12000

“irtual Tirme

Looping Pattern: postgres (IRR Map)

3500

[N}
=
=
[

=
=
=

IRR (Re-use Distance in Blocks)

2500

2000

1500 |

h---'--—'

a 2000

Virtual Time (Reference Stream)

4000

kOO0

LIRS

8000

10000

12000

Looping Pattern: postgres (Hit Rates)

postgres

g0

=
R=
b
o
E

OPT —a—

LIRS —s—

LRLZ —e—

20 —a—

LRFL ——

LR —e—

a 500 1000 1500 2000 2500 3000
Cache Size (# of blocks)

Impact of LIRS

o LIRS is a benchmark to compare replacement algorithms
« Reuse distance is first used in buffer management

o A paper in SIGMETRICS’05 confirmed that LIRS
outperforms all the other replacement.

o LIRS has become a topic to teach in both graduate and
undergraduate classes of OS, performance evaluation, and
databases at many US universities.

« A high number of citations to the LIRS paper.

o Linux Memory Management group has established an
Internet Forum on Advanced Replacement, including LIRS

LIRS has been adopted in MySQL

o MySQL is the most widely used relational database

o 11 million installations in the world

o The busiest Internet services use MySQL to maintain their
databases for high volume Web sites: google, YouTube,
wikipedia, facebook, ...

o LIRS is managing the buffer pool of MySQL

« The adoption is the most recent version (5.1), November 2008.

o LIRS is documented as Jiang-Zhang caching algorithm in
MySQL.

LIRS-MySQL-jiang-zhang. mht

() e world D popular ope D e fdatabase D 5 afp i |

File Edit “iew History Bookmarks Tools Help

¢I - - @ /IJ} |".'\, http:ffdey . mysgl, comysour cesdoxygenimysgl-5. 1 fpgman_shpp-source, html |Y| [}] |’|G00gle |'L4\l I(E—:‘a -

Contact a MySQL Representative Jiiad

S‘un » Recommended Servers for MySQL

wicrosyilems

The world's most popular open source database Lonin | Register

MySQL.com Developer Zone Partners & Solutions Customer Login

+ Downloads + Documentation « Articles « Forums « Bugs « Forge + Blogs

The world's most popular open source database

N —

hdodules Mamespaces Classes Files Related Fages

MHSQL | bi=in Fage
Newsletter

‘ File List | File Mermbers

mysql/src/5.1-dbg/storage/ndb/src/kernel/blocks/pgman.hpp

50 to the docurentation of this file.

oooo1l A * Copyright (C) Z003 My30L LB

ooooz

oooo3 This prograwn is free software; you can redistribute it andfor modify
Zmanda

oooo4 it under the terms of the GINU General Fublic License as published by

oooos the Free Software Foundation: either wersion 2 of the License, or

oooos [at your option) any later wersion.

ooaav

oooos This program iz distributed in the hope that it will he useful,

open oooog but WITHOUT ANY WARRAWTY; without even the iwplied warranty of

Source ooolio MERCHANTABILITY or FITWEZS FOR i PARTICULALER FURFOSE. See the

ooo1l GHNT General Public License for more details.
Backup o001z

ooo1s Tou should have received a copy of the GNU General Public License =

[ane

File Edit

<,—:|.

Wiew Hiskary

@

pular ope D Wils

Bookrarks Tools Help

%
Ll

T, hitpefidev.mysgl. comysourcesdoxygenimysgl-5. 1 /poman_shpp-source. html | S | r3 l "| iy l
oooss * A local check point (LCP) periodically performs a complete pageout of
oonse * dirty pages. It must iterate owver & list which will cowver all pages
oooed * which had been dirty since LCPF start.
oooel *
oooez * A olean page is a candidate [("wictim™) for being "unmapped” and
ooo&s % Mevicted™ from the cache, to allow another page to become resident.
oo0&e4 * This process is called "page replacement™.
oooss o+
oooss % PAGE REPLACEMENT
ooos? *

00068 * Page replacement uses the LIRS algorithm (Jiang-Zhang) .

aoass *

ooo70 * The "recency™ of a page is the time hetween now and the last reguest
ooovl * for the page. The "inter-reference recency”™ [(IRR) of a page is the
ooowz * Lime hetween the last 2 regquests for the page. "Time" is adwvanced by
ooo73 * request for any page.

goovg *

00075 * Page entries are divided into "hoc® ("1lir") and "cold™ ("hir™). Here
00076 % lir/hir refers to low/high IRR. Hot pages are always resident but
ooo77? % cold pages need not he.

aoovs o+

ooovs * Number of hot pages is limited to slightly less thah nuwber of cache
oooso * pages. UTntil this nuwkber is reached, all used cache pages are hot.
00081l * Then the algorithm described next is applied. The algorithin avoids
oonsz * storing any of the actual recency values.

=y -
(]

|

Dane

LIRS Is adopted in Java Library

o LIRS has been adopted in Infinispan, a Java-based data grid
o LIRS is being adopted in Java Class of
« ConcurrentLinkedHashMap

« as a software cache management facility

