Hardware Caches with Low
Access Times and High Hit Ratios

Xlaodong Zhang
Ohio State University

Acknowledgement of Contributions:
Chenxi Zhang, Tongji University
Zhichun Zhu, University of Illinois, Chicago

Basics of Hardware Caches

= A data item is referenced by its memory address.
= |t is first searched in the cache.

= Three questions cover all the cache operations:
. How do we know It Is In the cache?
. If 1t is (a hit), how do we find it?

. If it Is not (a miss), how to replace the data if the
location is already occupied?

Direct-Mapped Cache

= The simplest, but efficient and commonly used.
(Maurice Wilkes, IEEE TC 1965, a two-page paper)

= Each access Is mapped to exactly one location.

= The mapping follows:
. (memory address) mod (number of cache blocks)

= A standard block has 4 bytes (a word), but it Is
Increasingly longer for spatial locality.

An Example of an Direct Mapped-cache

EE

101
001
110
0T0
100
000

Cache

Memory

I

TO0TTT
00TTT
T10TT
0TOTT
TOOTT
000TT

TOTO0T
00101
11007
0TO0T
T000T
00001
LLLLFO

TOTT0
00TT0
11010
0T0TO
T00TO
000T0

TOTOO
00T00
11000
0T000
10000
00000

7., (00111),
15,, (01111),
23,, (10111),
31,, (11111),

Nature of Direct-mapped Caches

= |f the number of cache blocks Is a power of 2, the
mapping is exactly the low-order log, (cache size In
blocks) bits of the address.

= |f cache = 23 = 8 blocks, the 3 low-order bits are
directly mapped addresses.

he lower-order bits are also called cache index.

Tags in Direct-Mapped Caches

= A cache index for a cache block is not enough because
multiple addresses will be mapped to the same block.

= A "‘tag” 1s used to make this distinction. The upper portion
of the address forms the tag:

2 bits 3 hits

\ A /
Y Y

Tag Cache Index

= |f both the tag and index are matched between memory and
cache, a “"hit” happens.

= Avalid bit is also attached for each cache block.

. Each cache line contains a total of 49 bits:

Allocation of Tag, Index, and Offset Bits

. Cache size: 64 Kbytes.

. Block size: 4 Bytes (2 bits for offset)

. 64 Kbytes = 16 K blocks = 2 4 (14 bits for index)
. For a 32-bit memory address: 16 bits left for tag.

16 bits 14 bits 2 bits

Address

Tag Index for 16K words Byte
offset

. 32 bits (data of 4 Bytes)
. 16 bits (tag)
. 1 bit for valid bit.

Set-assoclative Caches

= Direct-mapping one location causes high miss rate.

= How about increasing the number of possible
locations for each mapping?

= The number of locations is called ""associativity”.
A set contains more than one location.

= associativity = 1 for direct-mapped cache

= Set-associative cache mapping follows:
. (memory address) mod (number of sets)

. Associativity = number of blocks for fully
associlative cache.

Direct-mapped vs. Set-associative

Direct-mapped

Set O

Address

Mod #set Mod #set

N

Set 7/

Way O

2-way set-assoclative

Set 3

Way 0 Way 1

Cache Accesses

Direct-mapped

References

Set 0 27 A4 27A 2

2

2-way set-associative
4 Set 0 4
2 A
Set 7 7 Set 3 7
Way O Way 0 Way 1

7 misses 4 misses

Direct-mapped Cache Operations:

Minimum Hit Time

tag

offset

Cache

tag| data

»
>

Data Ready

__tag NI

Yes!

CPU

Set-associative Cache Operations:
Delayed Hit Time

B st | offset

wayO

tag

data

—

way1l

way?2

way3

Set-assoclative Caches Reduce Miss Ratios

172.mgrid Data Cache Miss Rate

b
N

2 10 —
< 8 \\
e
8 @
= 2
0
1-way 2-way 4-way 8-way 16-way

Cache Associativity (16KB, blocks size 32B)

172.mgrid: SPEC 2000, multi-grid solver

Trade-offs between High Hit Ratios (SA)
and Low Access Times (DM)

Set- associative cache achieves high hit-ratios: 30% higher
than that of direct-mapped cache.

But it suffers high access times due to
. Multiplexing logic delay during the selection.
. Tag checking, selection, and data dispatching are sequential.

Direct-mapped cache loads data and checks tag in parallel:
minimizing the access time.

Can we get both high hit ratios and low access times?

The Key is the Way Prediction: speculatively determine
which way Is the hit so that only that way Is accessed.

Best Case of Way Prediction: First Hit

Cost: way prediction only

B s

offset

way0

tag

data

way1l way?2 way3

=7

o
.

Way Prediction: Non-first Hit (in Set)

Cost: way prediction + selection in set

B o | offset Way-prediction

wayO way1l way?2 way3
tag | data

\ Vi1

> To CPU

Worst Case of Way-prediction: Miss

Cost: way prediction + selection in set + miss

B st | offset

way0

tag

data

Lower level Memory

way1l way?2 way3

\ Vi1

> To CPU

MRU Way Predictions

* Chang, et. al., ISCA’87, (for IBM 370 by IBM)
* Kessler, et. al., ISCA’89. (Wisconsin)

» Mark the Most Recent Use (MRU) block In each set.
» Access this block first. If hits, low access time.
* |f the prediction Is wrong, search other blocks.

e If the search falls In the set, It IS a miIss.

MRU Way Prediction

Reference 1
0001 | 10

Miss | MRU T#bfe Way 0 1 2 Way 3

Reference 2

1011 | 10

-11| Joooo| | [at01] | foooz| |]ion

Non-first Hit

Limits of MRU Set-Assoclative Caches

= First hit is not equivalent to a direct-mapped hit.
. MRU index Is fetched before accessing the block (either cache
access cycle is lengthened or additional cycle is needed).
= The MRU location is the only search entry in the set.
. The first hit ratio can be low In cases without many repeated
accesses to single data (long reuse distance), such as loops.
= MRU cache can reduce access times of set-associative
caches by a certain degree but
. It still has a big gap with that of direct-mapped cache.

. It can be worse than set-associative cache when first-hits to MRU
locations are low.

Multi-column Caches: Fast Accesses and High
Hit Ratio

= Zhang, et. al., IEEE Micro, 1997. (Tongji, and Ohio
State)

= Objectives:
. Each first hit is equivalent to a direct-mapped access.
. Maximize the number of first hits.
. Minimize the latency of non-first-hits.
. Additional hardware should be simple and low cost.

Multi-Column Caches: Major Location

Set Offset

Address Tag F
» Unused bits directing to the

block (way) in the set

" The unused bits and " set bits” generate a direct-
mapped location: Major Location.

= A major location mapping = direct-mapping.

= Major location only contains a MRU block either
loaded from memory or just accessed.

Multi-column Caches: Selected Locations

= Multiple blocks can be direct-mapped to the same
major location, but only MRU is the major.

= The non-MRU blocks are stored in other empty
locations In the set: Selected Locations.

= [f “other locations” are used for their own major
locations, there will be no space for selected ones.

= Swap:
. A block in selected location Is swapped to major location
as It becomes MRU.

- A block In major location Is swapped to a selected
location after a new block Is loaded in it from memory.

Multi-Column: Indexing Selected Locations

= The selected locations associated with Its
major location are indexed for a fast search.

Location O

Major Location 1 has two Location 1

selected locations at 0 and 2

Location 2

I oo
110(0(0|0

—
0/ 0/0/0({0]0|0|0|0f1)0

3 21 03 2103 2103 210
Bit \Vector 3 Bit \Vector 2 Bit Vector 1 Bit Vector O

Summary of Multi-column Caches

= A major location In a set Is the direct-mapped
location of MRU.

= A selected location is the direct-mapped
location but non-MRU.

= An selected location index 1s maintained for
each major location.

= A swap” is used to ensure the block in the
major location Is always MRU.

Multi-column Cache Operations

Referlence 1
0001 | 10 Aituten0@6djat Mwation !
paiqrHegation !
Referfercg2 f
1011 | 10
Way 0 Way Way 2 Way 3
/
J
» 0000 0001 0111 1011
Selected location 0000 0000 0000 0010

No selected location!

Performance Summary of Multi-column Caches

Hit ratio to the major locations is about 90%.

= The hit ratio Is higher than that of direct-mapped cache due
to high associativity while keeps low access time of direct-

mapped cache In average.
. First-hit is equivalent to direct-mapped.
- Non-first hits are faster than set-associative caches.

= Not only outperform set associative caches but also
. Column-associative caches (two way only, ISCA’93, MIT).

Comparing First-hit Ratios between
Multicolumn and MRU Caches

64KB Data Cache Hit Rate (Program mgrid)

120%
100%
80%
60%
40%
20%
0%

Hit Rate

——overall

- MRU first-hit

Multicolumn first-
hit

4-way

8-way

16-way

Some Complexity of Multi-column Caches

Search of the selected locations can be

. sequential based on the vector bits of each set, or

. parallel with a multiplexor for a selection.

If @ mapping finds its major location iIs occupied by a
selected location in another major location group,

. either search the bit vectors to set the bit to 0, or simply

. Replace it by the major location data. When the selected location is
searched, it will be a miss.

The index may be omitted by only relying on the swapping.
Partial indexing by only tracing one selected location.

Frequency (MHz)

Multi-column Technique is Critical for
Low Power Caches

10000

Pentium 4

1000
Pentium Pro _
Pentium II
100

S ~
gé o x| | - Frequency
g § * —80486 Pentium / Transistor
S O 10 = —— Power
o
1
Ol I I I I I I I I I I I I I I I I I I

P & QPP DRSSP
Source: Intel.com

Importance of Low-power Designs

= Portable systems:
o Limited battery lifetime

= High-end systems

« Cooling and package cost
« > 40 W: 1W - $1
» Air-cooled techniques: reaching limits

 Electricity bill
» Reliability

Low-power Techniques

= Physical (CMOQS) level

= Circuit level

= Logic level

= Architectural level

= OS level

= Compiler level

= Algorithm/application level

Tradeoff between Performance and Power

= Objects for general-purpose system

« Reduce power consumption without degrading
performance

= Common solution
« Access/activate resources only when necessary

= Question
« When Is necessary?

On-chip Caches: Area & Power

(Alpha 21264)

;l"iill_

Power Consumption

»

OClock OIssue [Caches
O FP M Int H Mem
mI/O 1 Others

Source: CoolChip Tutorial

Standard Set-assoclative Caches:
Energy Perspective

set
wayO way1l way?2 way3

Y XX - XX

=7
p Vx4 1 - ToCPU
]

N :cache associativity, P, : tag power, P,,., : data power

Phased Cache: tag checking first

set

way0

tag

data

way1l way?2 way3

o
.

N :cache associativity, B, : tag power, P, :data power

Way-prediction Cache

set

way0

tag

data

wayl

way?2 way3

N :cache associativity, P,

ag

: tag power, P,

> To CPU

ata

- data power

Limits of Existing Techniques

= Way-prediction caches

» Benefits from cache hits (P, + Pyata)

« Effective for programs with strong locality
= Phased caches

» Benefits from cache misses (N XPy,;)
« Effective for programs with weak locality

Hit Rate

Cache Hit Ratios are Very Different

Hit Rate (64KB D-Cache, 4MB L2 Cache)

110%

et e \\ /ﬁ*\f\

80% \/

700/0 \y/
60% "+ dL1 hit rate
50% uL2 hit rate
400/0 I
L5800 SELsNELETSITTELYLTS D
SSGEGR858L 5225558 5°5SESRES
C8 T gnu%mEmE@ U%m—§§
Q = Oy %)

Cache Optimization Subject to
Both Power and Access Time

= Objectives

« Pursue lowest access latency and power consumption
for both cache hit and miss.

« Achieve consistent power saving across a wide range of
applications.

= Solution

o Apply way-prediction to cache hits and phase cache to
misses.

o Access mode prediction (AMP) cache.
o Zhu and Zhang, IEEE Micro, 2002 (Ohio State)

AMP Cache

ccess mode

Access all N tags

Access 1 data

\W

Access all other

ways ((N-1) tag
+ (N-1) data)

A 4

Way prediction

A

Access predicted

Prediction
correct?

Prediction and Way Prediction

= Prediction

« Access predictor is designed to predict next
access be a hit or a miss.

« The prediction result is used to switch between
phase cache and way prediction technique.

« Cache misses are clustered and program
behavior Is repetitive.

» Branch prediction techniques are adopted.

= \Way Prediction
o Multi-column is found the most effective.

Multi-column over MRU Caches

Energy Consumption:

>
27
= 3
< 00
N Isde
MOoRNIXIS

peewy

>
N
I I I
%)
©
O
=

09J99e]
ayenba

~

/

asimdnm
| Jjom]
cdizqg

| X81JOA

| deb

| Jwgllad
uoa

- Jasued

>

- Ayeao
- Jow
[0906
- 1da
N[dizb
1 1T 17 1T 1T 1
S XX XXX
©O O O O O O O O O
O ™~ © 1D < MO N -

uononpay Abiau3g

obeIoAy

iIsde
Moraxis
pgewy
seon|
dwuwe
J3.49d8)
ayenba
Me
|objeb
esawl
nidde
pubw
WIMS
asimdnm
Jjom}

cdizq

Access Mode Prediction

- yuwqpaad
- U0d
- J19sJed

—— Multicolumn — Phased

Energy Consumption

H
W - Aygen
Jouwl
Hﬁ H oJo] 7]
.\\) adA

uondwnsuo) Abidugz pazijewioN

Conclusion

= Multi-column cache fundamentally addresses the
performance issue for both high hit ratio and low
access time.

« major location mapping is dominant and has the
minimum access time (=direct-mapped access)

« Swap can increase the first hit ratios in major locations.
« Indexing selected locations make non-first-hits fast.

= Multicolumn cache is also an effective way
prediction mechanism for low powers.

