
1

Coordinating Accesses to Shared Caches in

Multi-core Processors

Software Approach

Xiaodong Zhang

Ohio State University

Collaborators: Jiang Lin, Zhao Zhang, Iowa State

Xiaoning Ding, Qingda Lu, P. Sadayappan, Ohio State

2

Moore’s Law in 37 Years (IEEE Spectrum May 2008)

Architectural Changes in Computer Systems

3

256MB

Memory

Dell Precision GX620

Purchased in 2004

L1

2MB L2

Disk

8MB L3 Cache

8GB Memory

L1

L2

L1

L2

L1

L2

L1

L2

Disk

Dell Precision1500

Purchased in 2009 with similar price

8MB L3 Cache

8GB Memory

L1

L2

L1

L2

L1

L2

L1

L2

Disk

Dell Precision 1500

Purchased in 2009 with similar price

Performance Issues w/ the Multicore Architecture

4

Performance of a multicore system is significantly

limited by slow data accesses to memory and disks
Cache Contention and Pollution:

Uncontrolled contention significantly

increases cache misses

Memory Bus Congestion:

Limited memory bandwidth is

competed for by multiple cores

“Disk Wall”:

Limited storage throughput is shared

by multiple cores

IBM Power 7 w/ Shared Last Level Cache (LLC) &

Shared Memory Controllers

5

Intel Core i7 with Shared Last Level Cache (LLC)

& Shared Memory Controller

6

Architecture of AMD Phenom X4

7

2MB L3 Cache

Main Memory

L1

L2

L1

L2

L1

L2

L1

L2

4 Cores share a 2MB

last level cache (LLC)

and data path

Architecture of Sun Niagara T2

8

4MB L2 Cache

Main Memory

L1 … L1

8 Cores share a 4MB

last level cache (LLC)

and data path

9

Shared Last Level Cache

Main Memory

Common Structure of Multi-cores

 Last level cache (LLC) and data path to memory (e.g. memory bus and

controller) are shared among multiple cores.

 Memory latency is order(s) of magnitude higher than cache latency.

 LLC is the last line of defense to prevent data accesses hitting

memory wall.

 Hot data (data frequently used) must be cached in LLC for fast

accesses

10

2MB L3 Cache

Main Memory

Contention for LLC Space Degrades Performance

 Multiple running threads contend for the shared LLC

space.

11

2MB L3 Cache

Main Memory

Contention for LLC Space Degrades Performance

 Multiple running threads contend for the shared LLC space.

 Uncontrolled contention evicts part of hot data from LLC.

 Visiting hot data in memory degrades performance significantly.

 Increased number of memory accesses with long latency

12

2MB L3 Cache

Main Memory

Contention for LLC Space Degrades Performance

 Multiple running threads contend for the shared LLC

space.

 Uncontrolled contention evicts part of hot data from

LLC

 Visiting hot data in memory degrades performance

significantly.

 Increased number of memory accesses with long latency

13

Multi-core Cannot Deliver Expected Performance as It Scales

Ideal

Actual

* Finding the Door in the Memory Wall, Erik Hagersten, HPCwire, Mar, 2009

Multicore Is Bad News For Supercomputers, Samuel K. Moore, IEEE Spectrum Nov, 2008

Performance

No mechanism (neither in hardware nor in OS)

addresses inter-thread cache contention in LLC

Managing LLC in Multi-cores is Challenging

• Shared cache management becomes NP-

complete in multi-core.

– [Jiang PACT’08, Hassidim ICS 2010]

• Practical Challenges

– LLC design lacks necessary hardware supports for

controlling inter-thread cache contention

• LLC share the same design with those for uni-core

processors

– Software has limited information and methods to

effectively control cache contention

• Working set model can be a pivotal point to

address cache contention problem

14

15

Shared Caches Can be a Critical Bottleneck

• L2/L3 caches are shared by multiple cores

– Intel Xeon 51xx (2core/L2)

– AMD Barcelona (4core/L3)

– Sun T2, ... (8core/L2)

• Cache partitioning can be effective

• Hardware cache partitioning methods have been

proposed with different optimization objectives

– Performance: [HPCA’02], [HPCA’04], [Micro’06]

– Fairness: [PACT’04], [ICS’07], [SIGMETRICS’07]

– QoS: [ICS’04], [ISCA’07]

Shared L2/L3 cache

Core Core …… Core

16

Limitations of Simulation-Based Studies

• Excessive simulation time
– Whole programs can not be evaluated. It would take several

weeks/months to complete a single SPEC CPU2006 prog

– As the number of cores continues to increase, simulation

ability becomes even more limited

• Absence of long-term OS activities
– Interactions between processor/OS affect performance

significantly

• Proneness to simulation inaccuracy
– Bugs in simulator

– Impossible to model many dynamics and details

17

Our Approach to Address the Issues

Design/implement OS-base Partitioning

– Embedding partitioning mechanism in OS

• By enhancing page coloring technique

• To support both static and dynamic partitioning

– Evaluate cache partitioning policies on

commodity processors

• Execution- and measurement-based

• Run applications to completion

• Measure performance with hardware counters

18

Five Questions to Answer

• Can we confirm the conclusions made by the

simulation-based studies?

• Can we provide new insights and findings that

simulation is not able to?

• Can we make a case for our OS-based approach

as an effective option to evaluate multicore

cache partitioning designs?

• What are advantages and disadvantages for OS-

based cache partitioning?

• Can the OS-based cache partitioning be used to

manage the hardware shared cache?

• HPCA’08, Lin, et. al. (Iowa State and Ohio State)

19

Outline

• Introduction

• Design and implementation of OS-based cache

partitioning mechanisms

• Evaluation environment and workload

construction

• Cache partitioning policies and their results

• Conclusion

20

OS-Based Cache Partitioning

• Static cache partitioning

– Predetermines the amount of cache blocks allocated to

each program at the beginning of its execution

– Page coloring enhancement

– Divides shared cache to multiple regions and partition

cache regions through OS page address mapping

• Dynamic cache partitioning

– Adjusts cache quota among processes dynamically

– Page re-coloring

– Dynamically changes processes’ cache usage through

OS page address re-mapping

21

Page Coloring

virtual page numberVirtual address page offset

physical page numberPhysical address Page offset

Address translation

Cache tag Block offsetSet indexCache address

Physically indexed cache

page color bits

… …

OS control

=

•Physically indexed caches are divided into multiple regions (colors).

•All cache lines in a physical page are cached in one of those regions (colors).

OS can control the page color of a virtual page through address mapping

(by selecting a physical page with a specific value in its page color bits).

22

Enhancement for Static Cache Partitioning

… …

...

……
…

……
…

Physically indexed cache

…
……

……
…

Physical pages are grouped to page bins

according to their page color1
2
3
4

…

i+2

i
i+1

…

Process 1

1
2
3
4

…

i+2

i
i+1

…

Process 2

O
S

 a
d

d
re

s
s
 m

a
p

p
in

g

Shared cache is partitioned between two processes through address mapping.

Cost: Main memory space needs to be partitioned too (co-partitioning).

23

Dynamic Cache Partitioning

• To respond dynamic program behavior

– hardware cache reallocations are proposed

– OS-based approach: Page re-coloring

• Software Overhead

–Measure overhead by performance counter

–Remove overhead in result (emulating

hardware schemes)

24

A
llo

c
a
te

d
 c

o
lo

r

Page Re-Coloring for Dynamic Partitioning

page links table

……

N - 1

0

1

2

3

• Page re-coloring:

– Allocate page in new color

– Copy memory contents

– Free old page

A
llo

c
a
te

d
 c

o
lo

r

 Pages of a process are organized into linked lists

by their colors.

 Memory allocation guarantees that pages are

evenly distributed into all the lists (colors) to

avoid hot points.

25

Reduce Page Migration Overhead

• Control the frequency of page migration

– Frequent enough to capture phase changes

– Reduce large page migration frequency

• Lazy migration: avoid unnecessary migration

– Observation: Not all pages are accessed between

their two migrations.

–Optimization: do not migrate a page until it is

accessed

26

• With the optimization

– Only 2% page migration overhead on average

– Up to 7%.

Lazy Page Migration

Process page links

……

N - 1

0

1

2

3

Avoid unnecessary page migration for these pages!

A
llo

c
a
te

d
 c

o
lo

r
A

llo
c
a
te

d
 c

o
lo

r

27

Experimental Environment

• Dell PowerEdge1950

–Two-way SMP, Intel dual-core Xeon 5160

–Shared 4MB L2 cache, 16-way

–8GB Fully Buffered DIMM

• Red Hat Enterprise Linux 4.0

–2.6.20.3 kernel

–Performance counter tools from HP (Pfmon)

–Divide L2 cache into 16 colors

28

Benchmark Classification

 Is it sensitive to L2 cache capacity?
 Red group: IPC(1M L2 cache)/IPC(4M L2 cache) < 80%

 Give red benchmarks more cache: big performance gain

 Yellow group: 80% <IPC(1M L2 cache)/IPC(4M L2 cache) < 95%

 Give yellow benchmarks more cache: moderate performance gain

 Else: Does it extensively access L2 cache?
 Green group: > = 14 accesses / 1K cycle

 Give it small cache

 Black group: < 14 accesses / 1K cycle

 Cache insensitive

29 benchmarks from SPEC CPU2006

6 9 6 8

29

Workload Construction

6 9 6

6

9

6

2-core

RR (3 pairs)

RY (6 pairs)

RG (6 pairs)

YY (3 pairs)

YG (6 pairs) GG (3 pairs)

27 workloads: representative benchmark combinations

30

Performance – Metrics

• Divide metrics into evaluation metrics and

policy metrics [PACT’06]

– Evaluation metrics:

• Optimization objectives, not always available at run-time

– Policy metrics

• Used to drive dynamic partitioning policies: available

during run-time

• Sum of IPC, Combined cache miss rate, Combined

cache misses

31

Static Partitioning

• Total #color of cache: 16

• Give at least two colors to each program

–Make sure that each program get 1GB memory to

avoid swapping (because of co-partitioning)

• Try all possible partitionings for all workloads

– (2:14), (3:13), (4:12) ……. (8,8), ……, (13:3),

(14:2)

– Get value of evaluation metrics

– Compared with performance of all partitionings

with performance of shared cache

32

Optimal Static Partitioning

Performance gain of optimal static partitioning

1.00

1.05

1.10

1.15

1.20

1.25

RR RY RG YY YG GG

Throughtput Average Weighted Speedup Normalized SMT Speedup Fair Speedup

 Confirm that cache partitioning has significant performance impact

 Different evaluation metrics have different performance gains

 RG-type of workloads have largest performance gains (up to 47%)

 Other types of workloads also have performance gains (2% to 10%)

33

New Finding I

• Workload RG1: 401.bzip2 (cache demanding)

+ 410.bwaves (less cache demanding)

• Intuitively, giving more cache space to

401.bzip2 (cache demanding)

– Increases the performance of 401.bzip2 largely

–Decreases the performance of 410.bwaves

slightly

• Our experiments give different answers

34

Performance Gains for Both

35

Cache Misses

36

Memory Bus Pressure is Reduced

Memory Bandwidth Utilization

2.70
2.75
2.80
2.85
2.90
2.95
3.00
3.05

2
:
1
4

3
:
1
3

4
:
1
2

5
:
1
1

6
:
1
0

7
:
9

8
:
8

9
:
7

1
0
:
6

1
1
:
5

1
2
:
4

1
3
:
3

1
4
:
2

Partitionings

G
B
/
s

37

Average Latency is Reduced
Average Memory Access Latency

140
142
144
146
148
150
152
154
156

2
:
1
4

3
:
1
3

4
:
1
2

5
:
1
1

6
:
1
0

7
:
9

8
:
8

9
:
7

1
0
:
6

1
1
:
5

1
2
:
4

1
3
:
3

1
4
:
2

Partitionings

n
s

38

Insight into Our Finding

• Coordination between cache utilization and

memory bandwidth is a key for performance

• This has not been shown by simulation

– Not model main memory sub-system in detail

• Assumed fixed memory access latency

• Advantages of execution- and measurement-

base study

39

Impact of the Work

• Intel Software and Service Group (SSG) has adopted the OS-

based cache partitioning methods (static and dynamic) as

software solutions to manage the multi-core shared cache.

• The solution has been merged into a production system in a

major automation industry (multi-core based motion controller)

• The software cache partitioning is becoming a standard

method in any OS for multi-cores, such as Windows

40

An Acknowledgment Letter from Intel

41

Quotes from the Intel Letter

• The software cache partitioning approach and a set of

algorithms helped our engineers implement a solution that

provided 1.5 times latency reduction in a custom Linux stack

running on multi-core Intel platforms.

• This solution has been adopted by a major industrial

automation vendor and facilitated the deployment on multi-

core platforms.

• Thanks for your strong contribution, technical insights, and

kind support!

46

Conclusion
• Confirmed some conclusions made by simulations

• Provided new insights and findings

– Coordinating usage of cache and memory bandwidth

– Poor correlation between evaluation and policy metrics for fairness

• Made a case for our OS-based approach as an effective option

for evaluating cache partitioning

• Advantages of OS-based cache partitioning

– Working on commodity processors for an execution- and

measurement-based study

– Shared hardware caches can be managed by OS

• Disadvantages of OS-based cache partitioning

– Co-partitioning (may under-utilize memory), migration overhead

• Have been adopted as a software solution for Intel.

