
LIRS: Low Inter-reference Recency Set

Replacement for VM and Buffer Caches

Xiaodong Zhang

Ohio State University

In collaborations with

Song Jiang (Wayne State University)

Least Recent Used (LRU) Replacement

• LRU is most commonly used replacement for data management.

• Blocks are ordered by recency in the LRU stack.

• Blocks enter from the top, and leave from bottom.

A block evicted from the

bottom of the stack should

have been evicted much

earlier !

1

6

3

2

5

LRU stack

.

.

.

The stack is long, the bottom is the
only exit.

The Problem of LRU Replacement

 File scanning: one-time accessed blocks are not replaced

timely; (e.g. 50% disk data in NCAR only used once).

 Loop-like accesses: blocks to be accessed soonest can be

unfortunately replaced;

 Accesses with distinct frequencies: Frequently accessed

blocks can be unfortunately replaced.

Inability to cope with weak access locality

Reasons for LRU to Fail but Powerful

• Why LRU fails sometimes?

• A recently used block will not necessarily be used again

or soon.

• The prediction is based on a single source information.

• Why it is so widely used?

• Simplicity: an easy and simple data structure.

• Works well for accesses following LRU assumption.

The Challenges of Addressing the LRU problem

• Address the limits of LRU fundamentally.

• Retain the low overhead and strong locality merits of LRU.

• Widely adopted in buffer management in production systems.

Two types of efforts to improve/replace LRU have been made:

• Case by case; or

• Building complex structure with high runtime overhead

Our contributions in SIGMETRICS’02 (Jiang and Zhang)

Related Work

 Aided by user-level hints

 Application-hinted caching and prefetching [OSDI, SOSP, ...]

 rely on users` understanding of data access patterns.

 Detection and adaptation of access regularities

 SEQ, EELRU, DEAR, AFC, UBM [OSDI, SIGMETRICS …]

 case-by-case oriented approaches

 Tracing and utilizing deeper history information

 LRFU, LRU-k, 2Q, ARC (VLDB, SIGMETRICS, SIGMOD, FAST …)

 Implementation, runtime overhead, and suboptimal performance

Inter-Reference Recency (IRR)

IRR (= ``reuse distance”, 1970) of a block: the number of other unique

blocks accessed between two consecutive references to the block.

Recency: the number of other unique blocks accessed from last reference

to the current time.

1 2 3 4 3 1 5 6 5

IRR = 3 R = 2

LRU-2≈IRR+R=6

Diverse Locality Patterns on Access Map

Virtual Time (Reference Stream)

L
o
g
ic

a
l

B
lo

c
k

 N
u

m
b

er

strong locality

loops

one-time

accesses

Locality Quantification Limit in LRU Stack

• Blocks are ordered by recency;

• Blocks enter from the stack top, and leave from its bottom;

1
LRU stack

3

2

5

9

8

43. . .

4

54 3

Recency = 1

Recency = 2

LRU Stack

• Blocks are ordered by recency in the LRU stack;

• Blocks enter from the stack top, and leave from its bottom;

LRU stack

3

2

4

5

9

8

3. . . 54 33

Recency = 2

IRR = 2

Inter-Reference Recency (IRR)
The number of other unique blocks

accessed between two consecutive

references to the block.

Recency = 0

Locality Strength

Locality

Strength

Cache Size

MULTI2

IR
R

 (
R

e
-u

s
e
 D

is
ta

n
c
e
 i

n
 B

lo
c
k
s
)

Virtual Time (Reference Stream)

LRU holds frequently accessed blocks with

“absolutely” strong locality.

holds one-time accessed blocks (0 locality)

Likely to replace other relatively strong locality blocks

Looking for Blocks with Strong Locality

Locality

Strength

Cache Size

MULTI2
IR

R
 (

R
e
-u

s
e
 D

is
ta

n
c
e
 i

n
 B

lo
c
k
s
)

Virtual Time (Reference Stream)

Holds strong locality

blocks (ranked by

reuse distance)

Basic Ideas of LIRS

 A high reuse distance (IRR) block is not used often.

 High IRR blocks are selected for replacement.

 Recency is used as a second reference.

 LIRS: Low Inter-reference Recency Set algorithm

 Keep Low reuse distance (IRR) blocks in buffer cache.

 Foundations of LIRS:

 effectively use multiple sources of access information.

 Responsively determine and change the status of each block.

 Low cost implementations.

Data Structure: Keep LIR Blocks in Cache

Low IRR (LIR) blocks and High IRR (HIR) blocks

LIR block set

(size is Llirs)

HIR block

set

Cache size

L = Llirs + Lhirs

Lhirs

Llirs

Physical Cache
Block

Sets

Replacement Operations of LIRS

Llirs=2, Lhirs=1

V time /

Blocks

1 2 3 4 5 6 7 8 9 10 R IRR

A X X X 1 1

B X X 3 1

C X 4 inf

D X X 2 3

E X 0 inf

LIR block set = {A, B}, HIR block set = {C, D, E}

E becomes a resident HIR determined by its low recency

LIR

LIR

HIR

D is referenced at time 10

V time /

Blocks

1 2 3 4 5 6 7 8 9 10 R IRR

A X X X 1 1

B X X 3 1

C X 4 inf

D X X XX 0 3

E X 1 Inf

The resident HIR block E is replaced !

Which Block is replaced ? Replace an HIR Block

replaced

E X

How is LIR Set Updated? LIR Block Recency is Used

V time /

Blocks

1 2 3 4 5 6 7 8 9 10 R IRR

A X X X 2 1

B X X 1

C X 4 inf

D X X XX 0 2

1 inf

Which set, HIR or LIR should D belong to?

Compare its IRR with recency of LIR.

Recency reflects the most updated status.

3

V time /
Blocks

1 2 3 4 5 6 7 8 9 10 R IRR

A X X X 2 1

B X X 3 1

C X 4 inf

D X X XX 0 2

E X 1 Inf

After D is Referenced at Time 10

D enters LIR set, and B is demoted to HIR set

Because D`s IRR< Rmax in LIR set

LIR

HIR

LIR

The Power of LIRS Replacement

 File scanning: one-time access blocks will be replaced
timely; (due to their high IRRs)

 Loop-like accesses: blocks to be accessed soonest will
NOT be replaced; (due to an MRU effect of HIR blocks)

 Accesses with distinct frequencies: Frequently accessed
blocks in short reuse distance will NOT be replaced.
(dynamic status changes)

Capability to cope with weak access locality

LIRS Efficiency: O(1)

Rmax

(Maximum Recency of LIR

blocks)

IRR HIR

(New IRR of a

HIR block)

YES! this efficiency is achieved by our LIRS stack.

• Both recencies and useful IRRs are automatically recorded.

• Rmax of the block in the stack bottom is larger than IRRs of others.

• No comparison operations are needed.

Can O(LIRS) = O(LRU) = O(1)?

LIRS Operations

resident in cache

LIR block

HIR block

Cache size

L = 5

Llir = 3

Lhir =2

5

3

2

1

6

9

4

8

LIRS stack

5

3

LRU Stack for HIRs

• Initialization: All the referenced blocks are given an

LIR status until LIR block set is full.

We place resident HIR blocks in a small LRU Stack.

• Upon accessing an LIR block (a hit)

• Upon accessing a resident HIR block (a hit)

• Upon accessing a non-resident HIR block (a miss)

5

3

2

1

6

9

4

8

5

3

resident in cache

LIR block

HIR block

Cache size

L = 5

Llir = 3

Lhir =2

. . . 4835795

Access an LIR Block (a Hit)

5

3

2

1

6

9

4

8

5

3

resident in cache

LIR block

HIR block

Cache size

L = 5

Llir = 3

Lhir =2

. . . 835795

Access an LIR Block (a Hit)

Access an LIR block (a Hit)

6

9

5

3

2

1

4

8

5

3

resident in cache

LIR block

HIR block

Cache size

L = 5

Llir = 3

Lhir =2

. . . 35795 8

Access a Resident HIR Block (a Hit)

5

3

2

1

4

8

5

3

resident in cache

LIR block

HIR block

Cache size

L = 5

Llir = 3

Lhir =2

. . . 35795

3

1

52

5

4

8

3

resident in cache

LIR block

HIR block

Cache size

L = 5

Llir = 3

Lhir =2

. . . 35795

Access a Resident HIR Block (a Hit)

1

52

5

4

8

3

resident in cache

LIR block

HIR block

Cache size

L = 5

Llir = 3

Lhir =2

. . . 35795

1

Access a Resident HIR Block (a Hit)

54

8

3

resident in cache

LIR block

HIR block

Cache size

L = 5

Llir = 3

Lhir =2

. . . 5795

15

Access a Resident HIR Block (a Hit)

Access a Non-Resident HIR block (a Miss)

5

4

8

3

resident in cache

LIR block

HIR block

Cache size

L = 5

Llir = 3

Lhir =2

. . . 795

1

5

7

7

5

4

8

3

resident in cache

LIR block

HIR block

Cache size

L = 5

Llir = 3

Lhir =2

. . . 95

5

7

7

9

5

9

5

Access a Non-Resident HIR block (a Miss)

4

8

3

resident in cache

LIR block

HIR block

Cache size

L = 5

Llir = 3

Lhir =2

. . . 5

7

7

9

5

9

7

5

4 7

Access a Non-Resident HIR block (a Miss)

8

3

resident in cache

LIR block

HIR block

Cache size

L = 5

Llir = 3

Lhir =2

. . .

9

9

4

7

5

Access a Non-Resident HIR block (a Miss)

LIRS Stack Simplifies Replacement

 Recency is ordered in stack with Rmax LIR block in bottom

 No need to keep track of each HIR block`s IRR because

 A newly accessed HIR block`s IRRs in stack = recency < Rmax.

 A small LRU stack is used to store resident HIR blocks.

 Additional operations of pruning and demoting are constant.

 Although LIRS operations are much more dynamic than

LRU, its complexity is identical to LRU.

Performance Evaluation

 Trace-driven simulation on different patterns shows

 LIRS outperforms existing replacement algorithms in

almost all the cases.

 The performance of LIRS is not sensitive to its only

parameter Lhirs.

 Performance is not affected even when LIRS stack size is

bounded.

 The time/space overhead is as low as LRU.

 LRU can be regarded as a special case of LIRS.

Selected Workload Traces

• 2-pools is a synthetic trace to simulate the distinct frequency case.

• cpp is a GNU C compiler pre-processor trace

• cs is an interactive C source program examination tool trace.

• glimpse is a text information retrieval utility trace.

• link is a UNIX link-editor trace.

• postgres is a trace of join queries among four relations in a relational database system

• sprite is from the Sprite network file system

• mulit1: by executing 2 workloads, cs and cpp, together.

• multi2: by executing 3 workloads, cs, cpp, and postgres, together.

• multi3: by executing 4 workloads, cpp, gnuplot, glimpse, and postgres, together

(1) various patterns, (2) non-regular accesses , (3) large traces.

Looping Pattern: postgres (Time-space map)

Looping Pattern: postgres (IRR Map)
IR

R
 (

R
e
-u

s
e
 D

is
ta

n
c
e
 i

n
 B

lo
c
k
s
)

Virtual Time (Reference Stream)

LRU

LIRS

Looping Pattern: postgres (Hit Rates)

Impact of LIRS

 LIRS is a benchmark to compare replacement algorithms

 Reuse distance is first used in buffer management

 A paper in SIGMETRICS’05 confirmed that LIRS

outperforms all the other replacement.

 LIRS has become a topic to teach in both graduate and

undergraduate classes of OS, performance evaluation, and

databases at many US universities.

 A high number of citations to the LIRS paper.

 Linux Memory Management group has established an

Internet Forum on Advanced Replacement, including LIRS

LIRS has been adopted in MySQL

 MySQL is the most widely used relational database

 11 million installations in the world

 The busiest Internet services use MySQL to maintain their

databases for high volume Web sites: google, YouTube,

wikipedia, facebook, …

 LIRS is managing the buffer pool of MySQL

 The adoption is the most recent version (5.1), November 2008.

 LIRS is documented as Jiang-Zhang caching algorithm in

MySQL.

LIRS is adopted in Java Library

 LIRS has been adopted in Infinispan, a Java-based data grid

 LIRS is being adopted in Java Class of

 ConcurrentLinkedHashMap

 as a software cache management facility

