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Computing is Pervasive and Powerful

 Computing resources become cheap and prolific.

 Increasingly low cost for fast CPUs and large memory.

 Cluster and Internet connect computing nodes easily. 

 Three types of major computing resources:

 High end systems, e.g. Blue Gene/L, Earth Simulator.

 Ultra high performance but expensive. (customer designed 

nodes/networks)

 Cluster systems, most Top-500’s

 Low cost, but low sustained performance. (commodity node/net)

 Google has been a successfully scalable example.  

 Global systems, e.g., TeraGrid, utility and cloud computing

 Utilizing global computing resources, but high Internet cost/overhead

• Clients are pervasive in everywhere in the globe
– Desktops, laptops, PDAs, etc. connect to the Internet or via wireless



Major Resources in Computing and Network Systems  
 Good News in supply

 CPU cycles: oversupplied for many applications. 

 Memory bandwidth: improved dramatically.

 Memory capacity: increasingly large and low cost.

 I/O bandwidth: improved dramatically. 

 Disk capacity: huge and cheap. 

 Cluster and Internet bandwidths: very rich.

 Bad News in demand

 CPU cycles per Watt decreases. (less energy efficient).

 Cache capacity: always limited. 

 Improvement of data access latencies very slow. 

 Networking and energy costs are increasingly high

 Adam Smith: commodity price is defined by an “invisible 
hand” in the market. We need to balance

 Oversupplied cycles, large storage capacity, fast networks

 High demand of low latency accesses, low energy cost
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Moore’s Law Driven Computing Research (IEEE Spectrum, May 2008)

hi

25 year of golden age of parallel computing

10 years of dark age 

of parallel computing, 

CPU-memory gap is the

major concern.

New  era of multicore computing

Memory problem continues
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SRAM Access Time DRAM Access Time Disk Seek Time

Unbalanced System Improvements:

A disk perspective

Bryant and O’Hallaron, “Computer Systems: A Programmer’s Perspective”, 

Prentice Hall, 2003 

The disks in 2000 are 57 times “SLOWER” than their 

ancestors in 1980 --- increasingly widen the Speed Gap

between Peta-Scale computing and Peta-Byte acesses.
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Opportunities of Technology Advancements 

• Single-core CPU reached its peak performance

– 1971 (2300 transistors on Intel 4004 chip): 0.4 MHz

– 2005 (1 billion + transistors on Intel Pentium D): 3.75 GHz

– After 10,000 times improvement, GHz stopped and dropped

– CPU improvement will be reflected by number of cores in a chip   

• Increased DRAM capacity enables large working sets 

– 1971 ($400/MB) to 2006 (0.09 cent/MB): 444,444 times lower

– Buffer cache is increasingly important to break “disk wall” 

• SSDs (flash memory) can further break the “wall”

– Non-volatile device with limited write life (can be an independent disk) 

– Low power (6-8X lower than disks, 2X lower than DRAM) 

– Fast random read (200X faster than disks, 25X slower than DRAM)

– Slow writing (300X slower than DRAM, 12X faster than disks)  

– Relatively expensive (8X more than disks, 5X cheaper than DRAM)
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Research and Challenges  

• New issues in Multicore 

– To utilize parallelism/concurrency in multicore is challenging

– Resource sharing in multicore causes new problems

– OS scheduling is multi-core- and shared-resources-unaware 

– Challenges: OS management scope needs to be enhanced. 

• Low latency data accesses is most desirable  

– Sequential locality in disks is not effectively exploited. 

– Where should SSD be in the storage hierarchy? 

– How to use SSD and DRAM to improve disk performance 

and energy in a cost-effective way? 

– Challenges: disks are not in the scope of OS managements 
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Multi-Core is the only Choice to Continue Moore’s Law

Performance Power Dual-Core

Over-Clocked (1.2x)

1.13 x

1.73 x

0.51 x

0.87 x

Under-Clocked (0.8x)

1.73 x

Dual-Core (0.8x)

1.02 x

R.M. Ramanathan, Intel Multi-Core Processors: Making the Move to Quad-Core and Beyond, white paper 

Much better 

performance

1.00 x

Baseline Frequency

1.00 x

Similar  

power

consumption
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Shared Caches Can be a Critical Bottleneck 

• Last Level Caches (LLC) are shared by multiple cores

– Intel Xeon 51xx (2core/L2) 

– AMD Barcelona (4core/L3)

– Sun T2, ...           (8core/L2)

• Cache partitioning: allocate cache space to each process 

based their needs, fairness, and QoS.   

• Hardware partitioning methods proposed in research

– Performance: [HPCA’02], [HPCA’04], [Micro’06]

– Fairness: [PACT’04], [ICS’07], [SIGMETRICS’07]

– QoS: [ICS’04], [ISCA’07]

• None of them have been adopted in multicores

– Runtime overhead in critical path

– Design is too complicated 

Shared L2/L3 cache

Core Core …… Core



10

Cache

Memory

Cache Cacheconflict

Cache Sensitive Job

Computation Intensive Job

Streaming Job

Memory Bus

• Scheduling two cache sensitive jobs - causing cache conflicts

jobs jobs

Shared Resource Conflicts in Multicores 
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Cache

Memory

Cache Sensitive Job

Computation Intensive Job

Streaming Job

Memory Bus

Cache Cache

Saturation

• Scheduling two streaming jobs - causing memory bus congestions

• Scheduling two cache sensitive jobs - causing cache conflicts

jobs jobs

Shared Resource Conflicts in Multicores



12

Cache

Memory

• Scheduling two CPU intensive jobs – underutilizing cache and bus

Cache Sensitive Job

Computation Intensive Job

Streaming Job

Memory Bus

• Scheduling two streaming jobs - causing memory bus congestions

• Scheduling two cache sensitive jobs - causing cache conflicts

Underutilized 

resources

jobs jobs

Shared Resource Conflicts in Multicores
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Cache

Memory

CacheCache

Cache Sensitive Job

Computation Intensive Job

Streaming Job

Memory Bus

Streaming job 

pollutes 

cache

Increased 

memory activity

jobs jobs

• Scheduling two CPU intensive jobs – underutilizing cache and bus

• Scheduling two streaming jobs - causing memory bus congestions

• Scheduling two cache sensitive jobs - causing cache conflicts

• Scheduling cache sensitive & streaming jobs – conflicts & congestion

Shared Resource Conflicts in Multicores
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Cache Cache

Memory

Memory Bus

• Many Cores – oversupplying computational power

Challenges of Many Cores, Shared Cache, Single Bus

Cache Cache Cache Cache Cache Cache Cache Cache

• Shared Cache – lowering average cache capacity per process and per core

• Single Bus – increasing bandwidth sharing by many cores 
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Can OS be Able to Address All These Concerns?   

• Inabilities of OS to handle workloads in multicores

– Lacking application domain knowledge (static & dynamic)

– Unaware of shared cache structures 

– Limited communication with hardware & programs

– Insufficient information to effectively schedule threads

• To address all these concerns, OS must

– frequently monitor and analyze application execution 

– directly interface with processor architecture 

– unaffordable tasks for both OS and multicore processors 

• Hybrid approach is effective: 

– Applications monitor or give hints of access patterns

– Scheduling can be at user level or get hints from application

– OS indirectly manages the shared cache for space allocation

– Design affordable hardware interface to support OS



16

Data-Intensive Scalable Computing (DISC)

 Massively Accessing/Processing Data Sets in Fast Speed 

 drafted by R. Bryant at CMU, endorsed by Industries: Intel, 

Google, Microsoft, Sun, and scientists in many areas. 

Applications in science, industry, and business.

 Special requirements for DISC Infrastructure: 

 Top 500 DISC ranked by data throughput, as well FLOPS

 Frequent interactions between parallel CPUs and 

distributed storages. Scalability is challenging. 

 DISC is not an extension of SC, but demands new 

technology advancements.
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Systems Comparison: (courtesy of Bryant)

– Disk data stored separately

• No support for collection or 

management

– Brought in for computation

• Time consuming

• Limits interactivity

– System collects and 

maintains data

• Shared, active data set

– Computation co-located 

with disks

• Faster access

SystemSystem

DISCConventional Computers



Data Communication in Computer Systems

Transfer Bandwidth Time

Latency Time

Destination-perceived latency reduction is still limited due 

to imbalanced improvement of bandwidth and latency

Source Destination



Latency Lags Bandwidth (CACM, Patterson)

• In the last 20 years, 
100–2000X improvement in bandwidth

5-20X improvement in latency

Between CPU and on-chip L2: 

bandwidth: 2250X increase

latency: 20X reduction

Between L3 cache and DRAM:

bandwidth: 125X increase

Latency: 4X reduction

Between DRAM and disk:

bandwidth: 150X increase 

latency: 8X reduction 

Between two nodes via a LAN:

bandwidth: 100X increase

latency: 15X reduction



How is Resource Supply/Demand Balanced?
 Slowdown CPU Speed:

– Earth Simulator: NEC AP, 500 MHz (4-way SU, a VU).

– Blue Gene/L: IBM Power PC 440, 700 MHz.

– Columbia: SGI Altix 3700 (Intel Itanium 2), 1.5 GHz. (commodity 
processors, no choice for its high speed)

• Very low latency on-chip data accesses:
– Earth Simulator: 128K L1 cache and 128 large registers. 

– Blue Gene/L: on-chip L3 cache (2 MB).   

– Columbia: on-chip L3 cache (6 MB).

• Fast accesses to huge and shared main memory.
– Earth Simulator: cross bar switches between AP and memory.

– Blue Gene/L: cached DRAM memory, and 3-D torus connection.

– Columbia: SGI NUMALink’s data block transfer time: 50 ns.

 Further latency reductions: prefetching and caching. 



Computing Operations Versus Data Movement

 Computation is much cheaper than data movement
– In a 0.13 um CMOS, a 64-bit FPU < 1 mm2, 16 FPUs can be easily 

placed in a 14mm * 14mm 1 GHz chip ($200). 

– Processing data from 16 registers (256 GB/s)

 < $12.5/GFlop (60 mW/GFlop)

– Processing data from on-chip caches (100 GB/s)

 $32/Gflop (1 W/GFlops)

– Processing data from off-chip memory (16 GB/s) 

• $200/Gflops (many Ws/GFlops)

– Processing data from further location increases cost dramatically.

– A vector machine with a lot FPUs and registers makes computations 
even cheaper.   

 Maximizing the fractions of local operations is the Key.



Challenges of Balancing Systems Cost-Effectively

 The special systems mainly rely on expensive 

customer designed CPUs, memory, and networks. 

 Without such a large budget, what should we do? 

 To cope with the bandwidth-latency imbalance, we 

must exploit locality anywhere if necessary by 

– Caching: reuse data in a relatively close place.

– Replication: utilize large memory/storage capacity

– Prefetching: utilize rich bandwidth to hide latency. 
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L1TLB

L3
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Row buffer
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Controller
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Buffer cache

CPU-memory bus
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Re-evaluation of Grid

 What is grid?
– An infrastructure enables a set of resources (computing, 

data, network, et. al.) to be used by applications.   

– Expecting grid to do everything. (e.g. replacing high 

performance computing and cluster computing)

– In reality,  the scope of a grid is limited by existing 

infrastructure. 

 Grid’s scope have been exaggerated.
– Overestimate its application demands.  

– Underestimate technology costs and market response.

– The vision targets general applications,  but development 

focuses on special workloads, e.g. scientific computing



Examining the Case of the TeraGrid Project in US

 A brief history of TeraGrid
– This grid was initially built at 4 sites: NCSA, SDSC, AN, and 

Caltech (Pasadena), with an NSF grant of $53 M, August 

2001.

– October 02, NSF added another $35 M and included 

Pittsburg Supercomputing Center as the 5th partner. 

– October 03, NSF provided $10 M to add 4 other sites to the 

TeraGrid: ORNL, Purdue U., Indiana U., and U. of Texas.   

– August 05, NSF gave $150 M to maintain TeraGrid next 5 

years. 

 The Power of the TeraGrid
– A accumulated total computing powers of 40+ TeraFlops.   

– 2 PeterByte (1015) storage distributed in the 9 sites. 

– 9 sites are interconnected at 10-30 GB/s via a dedicated 

network. 





Major Types of Applications on TeraGrid

 Collaborations with timely analyzing/exchanging data sets.  

– Each collaborating site does independent data analysis, 

project solutions depend on periodically and quickly 

exchanging results. e.g. the ``telescope” project of studying 

cosmic rays. (UCI)

 Distributed simulations shared by multiple parties. 

– e.g. TeraShake (USC): huge earthquake simulations are 

operated at different sites, and results at different stages 

can be quickly shared by scientists in any TeraGrid site via 

high speed networks.   

• Computing-/data-intensive jobs not fitting in a single site.  

– Effectively utilize dedicated computing powers and huge 

storage.  



TeraGrid Model has its own Special Scope

 It does not represent a next generation Internet
– It is dedicated and expensive, effective only for certain 

applications.

 It does not need a special distributed OS.

– Management is done via middleware at user level. 

 It does not need a special programming model.

– The distributed execution facility is not transparent.

 It is not a source of free cycles.

– Free cycles can be obtained at very low cost: 

– Accumulated cycles of SETI@home are over 60 
Teraflops. 

– Huge amount free computing services from google, hotmail, 
and amazon.com.



Why is Grid not effective for High-end Computing?

 It will be extremely cost-ineffective to use dedicated 

links for message passing to run a parallel job in grid: 
– The fast links are for the purposes of data accesses of collaborations. 

– The communication is too expensive and too slow. 

– High end computing jobs should go to Blue Gene/L, ES, and others.

 To maintain a 40 TeraGrid is much more expensive 

than a tightly coupled high end system, such as ES.

– The interfaces among different sites are much more 

complicated.

– The maintenance cost of each site can be as high as ES. 

– Fast links across the country are very expensive. 

 Locality is not a major concern in grid systems.

– This is the key in high end computing. 



Highly Computing Intensive Jobs with a Small Data Input

 A cryptographic search problem: 

– only a few Kbytes input/output, but computing for 

days. 

 A representative job submitted to SETI@Home:  

– computing on 12 hours on 1/2 Mbytes of input 

 A CFD computation at Cornell:

– 7 years computing for 100 MB input, 10 GB output.

 Making animated movie of Toy Story:

– a 200 MB image to take several hours to render.

• These are suitable to Grid systems slow links. 



Resource Optimization and Utilization in Grid

 Bandwidths are much more expensive than cycles! 

– A rule of thumb: to send a GB over Grid links to save years 

of computing is much more meaningful than to send a KB if 

the job can be done locally in a second. 

 Internet cost drops slower than Moore’s Law.

 Cluster computing has different cost model

– Unlike Internet, clusters do not have a monthly fee.

– a GBps Ethernet costs $200/port, delivers 50 MBps.

– it is comparable to disk bandwidth cost. (Clusters are the 

best homes for many large scientific applications).



A Foundation of Distributed Computing: Resource Virtualization

 Objectives 

– Share expensive facilities by different apps/users.

– Provide simplified views of computing resources. 

 Hardware-level virtualization

– An instruction set shared by different chips (e.g. Intel IA-32)

 OS Level virtualization

– Multiple OS context switch in a single system (e.g. VMware).

• Hardware/OS virtualization

– Hiding dependency between hardware and OS (e.g. 

NGSCB, MS)

• Cluster resource virtualization

– Workload migration among different networked nodes 



Cost of System Virtualization

 Communication overhead

– Execute jobs remotely with data communication

– low data-communication efficiency

– Limited system scalability, e.g. shared-virtual memory 

 Processing overheads at different levels

– Hardware adoptions, Instruction set emulator, VM monitors, 

VM executors in OS, ….  

– Low physical resource utilization

 Loosing opportunities of Locality optimization

– Lacking controls of data layout in physical layers

• Cost-effective solutions:

– Minimize all the above costs if any

– Big benefits gain with small overheads



Grid: Internet Resource Virtualization
 Trade-offs between resource replications and virtualization

– As rapid cost drop of computing resources (CPU, memory, 

I/O, …), global resource virtualization demand declines.

– Virtualization is cost-effective to non-replicable resources.

– Internet data transfers are expensive. 

 Internet management is autonomous system (AS) based

– Each AS consists of networks administrated by a single org. 

– Data transfers/management among ASes  are 

slow/complex. 

– A Grid can be an AS, such as TeraGrid. 

 Replication and caching first, virtualization second.

– Only after the low cost and simple effort does not work, … 



Lessons Learned from Grid Projects in US 

 The scope of grid model is limited to specific applications

– Collaborations on common data sets

– Sharing expensive facilities via Internet  

 Network communication is assumed to be (almost) free

– Data transfer is very expensive but computing is free

– Scheduling and resource allocations are not cost-effective

 Principle of locality is not considered

– Caching/prefetching is powerful everywhere in systems 

• Resource virtualization for “virtualization” 

– Replications can be faster more cost-effective solutions  

• Cost was not a serious consideration in grid model

– A common mistake made by government initiatives

– For a given budget, where do we make investment, networks, servers, 

storages, to gain the maximum performance.   



Cloud Computing: A Low Cost Resource Sharing Model

 Computing service is a standard utility

– Users and corporations contract the services by units.

– Significantly reduce the IT personal and infrastructure costs

– Well utilize rich computing, storage, and Internet resources 

 Principles of cloud computing

– Cost-effectiveness is the basis for computing, storage, and 

communication models in cloud computing (SIGCOM’09)

– Targeting standard computing model in a wide range

– Exploiting locality and load sharing with low overhead 

 New challenges (CS@Berkeley, 2009)

(1) availability of service;  (2) sharing data in different platforms;  (3) data 

security;  (4) minimizing communication cost; (5) unpredictable performance; 

(6) scalability of storage; (7) reliability of large scale distributed systems; (8)

service scalability; (9) trust to the cloud service; and (10) software licensing 



Conclusion 

 Technology advancement driven (Moore’s Law).

– Multicore adds another dimension of parallelism and others 

– Memory bandwidth becomes bottleneck

– Power consumption would limit wide deployment of IT

• Amdal’s Law is a system design principle 

– Critical issues determine the overall performance: 

 Data access latency and memory bandwidth 

 Principle of Locality is a foundation 

– Latency reduction by caching, prefetching and replication

– Effectively exploiting locality at all system layers is the key

• Cloud computing must follow the three laws/principle



Final Words 

 Two quotes from Bertrand Russell (罗素, 1872-1970)

– I think we ought always to entertain our opinions with some 

measure of doubt. I shouldn't wish people dogmatically to 

believe any philosophy, not even mine. 

– In all affairs it's a healthy thing now and then to hang a 

question mark on the things you have long taken for granted. 

 Many new concepts have been proposed

– Grid, P2P, virtualization, cloud computing, …. 

– we should have doubts and questions about them

• Foundations of technology advancement 

– Science discerns the laws of nature; industries 

(technologies) apply them to the needs of man. (Chicago 

Science and Industry Musuem) 


