
LIRS: Low Inter-reference Recency Set 

Replacement for VM and Buffer Caches

Xiaodong Zhang

Ohio State University

In collaborations with 

Song Jiang (Wayne State University)



Least Recent Used (LRU) Replacement

• LRU is most commonly used replacement for data management.

• Blocks are ordered by recency in the LRU stack.

• Blocks enter  from the top, and leave from bottom.

A block evicted from the 

bottom of the stack should 

have been evicted much 

earlier !
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The stack is long, the bottom is the 
only exit.



The Problem of LRU Replacement

 File scanning: one-time accessed blocks are not replaced 

timely; (e.g. 50% disk data in NCAR only used once). 

 Loop-like accesses: blocks to be accessed soonest can be 

unfortunately replaced;

 Accesses with distinct frequencies:  Frequently accessed 

blocks can be unfortunately replaced. 

Inability to cope with weak access locality



Reasons for LRU to Fail but Powerful

• Why LRU fails sometimes?

• A recently used block will not necessarily be used again 

or soon. 

• The prediction is based on a single source information.

• Why it is so widely used?

• Simplicity: an easy and simple data structure. 

• Works well for accesses following LRU assumption.



The Challenges of Addressing the LRU problem

• Address the limits of LRU fundamentally. 

• Retain the low overhead and strong locality merits of LRU.

• Widely adopted in buffer management in production systems. 

Two types of efforts to improve/replace LRU have been made:

• Case by case; or

• Building complex structure with high runtime overhead

Our contributions in SIGMETRICS’02 (Jiang and Zhang)



Related Work

 Aided by user-level hints

 Application-hinted caching and prefetching [OSDI, SOSP, ...]

 rely on users` understanding of data access patterns. 

 Detection and adaptation of access regularities

 SEQ, EELRU, DEAR, AFC, UBM [OSDI, SIGMETRICS …] 

 case-by-case oriented approaches

 Tracing and utilizing deeper history information

 LRFU, LRU-k, 2Q, ARC (VLDB, SIGMETRICS, SIGMOD, FAST …)

 Implementation, runtime overhead, and suboptimal performance



Inter-Reference Recency (IRR)

IRR (= ``reuse distance”, 1970) of a block: the number of other unique 

blocks accessed between two consecutive references to the block. 

Recency: the number of other unique blocks accessed from last reference 

to the current time.

1 2     3     4     3     1 5     6     5 

IRR = 3 R = 2

LRU-2≈IRR+R=6



Diverse Locality Patterns on Access Map

Virtual Time (Reference Stream)
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Locality Quantification Limit in LRU Stack 

• Blocks are ordered by recency;

• Blocks enter from the stack top, and leave from its bottom;
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LRU Stack

• Blocks are ordered by recency in the LRU stack;

• Blocks enter from the stack top, and leave from its bottom;

LRU stack
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Inter-Reference Recency (IRR)
The number of other unique blocks 

accessed between two consecutive 

references to the block. 

Recency = 0



Locality Strength 
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Virtual Time (Reference Stream)

LRU holds frequently  accessed blocks with 

“absolutely” strong locality.

holds one-time accessed blocks (0 locality) 

Likely to replace other relatively strong locality blocks



Looking for Blocks with Strong Locality 
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Basic Ideas of LIRS

 A high reuse distance (IRR) block is not used often.  

 High IRR blocks are selected for replacement.

 Recency is used as a second reference. 

 LIRS: Low Inter-reference Recency Set algorithm

 Keep Low reuse distance (IRR) blocks in buffer cache. 

 Foundations of LIRS: 

 effectively use multiple sources of access information.

 Responsively determine and change the status of each block.

 Low cost implementations.



Data Structure: Keep LIR Blocks in Cache

Low IRR (LIR) blocks and High IRR (HIR) blocks

LIR block set

(size is Llirs )

HIR block 

set

Cache size 

L = Llirs + Lhirs

Lhirs

Llirs

Physical Cache
Block 

Sets



Replacement Operations of LIRS

Llirs=2,  Lhirs=1

V time /

Blocks

1 2 3 4 5 6 7 8 9 10 R IRR

A X X X 1 1

B X X 3 1

C X 4 inf

D X X 2 3

E X 0 inf

LIR block set = {A, B},   HIR block set = {C, D, E}

E becomes a resident HIR determined by its low recency

LIR

LIR

HIR



D is referenced at time 10

V time / 

Blocks 

1 2 3 4 5 6 7 8 9 10 R IRR 

A X     X  X   1 1 

B   X  X      3 1 

C    X       4 inf 

D  X     X   XX  0 3 

E         X  1 Inf 

 

 

The resident HIR block E is replaced !

Which Block is replaced ? Replace an HIR Block

replaced



E X

How is LIR Set Updated? LIR Block Recency is Used

V time /

Blocks

1 2 3 4 5 6 7 8 9 10 R IRR

A X X X 2 1

B X X 1

C X 4 inf

D X X XX 0 2

1 inf

Which set, HIR or LIR should D belong to?

Compare its IRR with recency of LIR.

Recency reflects the most updated status. 
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V time /
Blocks

1 2 3 4 5 6 7 8 9 10 R IRR

A X X X 2 1

B X X 3 1

C X 4 inf

D X X XX 0 2

E X 1 Inf

After D is Referenced at Time 10

D enters LIR set, and B is demoted to HIR set

Because D`s IRR< Rmax in LIR set

LIR

HIR

LIR



The Power of LIRS Replacement

 File scanning: one-time access blocks will be  replaced 
timely;  (due to their high IRRs)

 Loop-like accesses: blocks to be accessed soonest will 
NOT be replaced; (due to an MRU effect of HIR blocks)

 Accesses with distinct frequencies:  Frequently accessed 
blocks in short reuse distance will NOT be replaced. 
(dynamic status changes)

Capability to cope with weak access locality



LIRS Efficiency: O(1)

Rmax

(Maximum Recency of LIR 

blocks)  

IRR HIR 

(New IRR of  a 

HIR block)

YES! this efficiency is achieved by our LIRS stack.

• Both recencies and useful IRRs are automatically recorded.

• Rmax of the block in the stack bottom is larger than IRRs of others.

• No comparison operations are needed. 

Can O(LIRS) = O(LRU) = O(1)? 



LIRS Operations

resident in cache

LIR block

HIR block

Cache size

L = 5

Llir = 3 

Lhir =2
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LRU Stack for HIRs

• Initialization: All the referenced blocks are given an 

LIR status until LIR block set is full.

We place resident HIR blocks in  a small LRU Stack.

• Upon accessing an LIR block (a hit)

• Upon accessing a resident HIR block (a hit)

• Upon accessing a non-resident HIR block (a miss)
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Access an LIR block (a Hit)
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Access a Resident HIR Block (a Hit)
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Access a Non-Resident HIR block (a Miss)
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LIRS Stack Simplifies Replacement 

 Recency is ordered in stack with Rmax LIR block in bottom 

 No need to keep track of each HIR block`s IRR because 

 A newly accessed HIR block`s IRRs in stack = recency < Rmax.

 A small LRU stack is used to store resident HIR blocks.

 Additional operations of pruning and demoting are constant.

 Although LIRS operations are much more dynamic than 

LRU, its complexity is identical to LRU.  



Performance Evaluation

 Trace-driven simulation on different patterns shows 

 LIRS outperforms existing replacement algorithms in 

almost all the cases.

 The performance of LIRS is not sensitive to its only 

parameter Lhirs. 

 Performance is not affected even when LIRS stack size is 

bounded.

 The time/space overhead is as low as LRU.

 LRU can be regarded as a special case of LIRS.



Selected Workload Traces

• 2-pools is a synthetic trace to simulate the distinct frequency case. 

• cpp is a GNU C compiler pre-processor trace

• cs is an interactive C source program examination tool trace. 

• glimpse is a text information retrieval utility trace. 

• link is a UNIX link-editor trace. 

• postgres is a trace of join queries among four relations in a relational database system

• sprite is from the Sprite network file system

• mulit1: by executing 2 workloads, cs and cpp, together. 

• multi2: by executing 3 workloads, cs, cpp, and postgres, together. 

• multi3: by executing 4 workloads, cpp, gnuplot, glimpse, and postgres, together

(1)  various patterns, (2)  non-regular accesses , (3) large traces.



Looping Pattern: postgres (Time-space map)  



Looping Pattern: postgres (IRR Map)  
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Looping Pattern: postgres (Hit Rates)  



Impact of LIRS

 LIRS is a benchmark to compare replacement algorithms

 Reuse distance is first used in buffer management

 A paper in SIGMETRICS’05 confirmed that LIRS 

outperforms all the other replacement.

 LIRS has become a topic to teach in both graduate and 

undergraduate classes of OS, performance evaluation, and 

databases at many US universities. 

 A high number of citations to the LIRS paper.

 Linux Memory Management group has established an 

Internet Forum on Advanced Replacement, including LIRS  



LIRS has been adopted in MySQL

 MySQL is the most widely used relational database

 11 million installations in the world 

 The busiest Internet services use MySQL to maintain their 

databases for high volume Web sites: google, YouTube, 

wikipedia, facebook, … 

 LIRS is managing the buffer pool of MySQL

 The adoption is the most recent version (5.1), November 2008.

 LIRS is documented as Jiang-Zhang caching algorithm in 

MySQL.   







LIRS is adopted in Java Library

 LIRS has been adopted in Infinispan, a Java-based data grid

 LIRS is being adopted in Java Class of 

 ConcurrentLinkedHashMap 

 as a software cache management facility


