
1

Exploiting Sequential Locality for 

Fast Disk Accesses

Xiaodong Zhang

Ohio State University

In collaboration with

Song Jiang, Wayne State University

Feng Chen and Xiaoning Ding, Ohio State

Kei Davis, Los Alamos National Lab



2

“Disk Wall” is a Critical Issue

 Many data-intensive applications generate huge data sets 

in disks world wide in very fast speed.

 LANL Turbulence Simulation: processing 100+ TB.  

 Google searches and accesses over 10 billion web 

pages and tens of TB data in Internet.

 Internet traffic is expected to increase from 1 to 16 

million TB/month due to multimedia data.

We carry very large digital data, films, photos, …

 Data home is the cost-effective & reliable Disks   

 Slow disk data access is the major bottleneck



3

0.3 0.375
87,000

0.9
1.2

451,807
0.7

2
560,000

2.5

11.66

1,666,666

1.25

37.5

5,000,000

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

5000000

C
P

U
 C

y
c

le
s

1980 1985 1990 1995 2000

Year

Latencies of Cache, DRAM and Disk in CPU Cycles

SRAM Access Time DRAM Access Time Disk Seek Time

Unbalanced System Improvements 

Bryant and O’Hallaron, “Computer Systems: A Programmer’s Perspective”, 

Prentice Hall, 2003 

The disks in 2000 are 57 times “SLOWER” than their 

ancestors in 1980 --- increasingly widen the Speed Gap

between Peta-Scale computing and Peta-Byte acesses.



4

Data-Intensive Scalable Computing (DISC)

 Massively Accessing/Processing Data Sets in Parallel. 

 drafted by R. Bryant at CMU, endorsed by Industries: Intel, 

Google, Microsoft, Sun, and scientists in many areas. 

Applications in science, industry, and business.

 Special requirements for DISC Infrastructure: 

 Top 500 DISC ranked by data throughput, as well FLOPS

 Frequent interactions between parallel CPUs and 

distributed storages. Scalability is challenging. 

 DISC is not an extension of SC, but demands new 

technology advancements.



5

Systems Comparison: (courtesy of Bryant)

– Disk data stored separately

• No support for collection or 

management

– Brought in for computation

• Time consuming

• Limits interactivity

– System collects and 

maintains data

• Shared, active data set

– Computation co-located 

with disks

• Faster access

SystemSystem

DISCConventional Supercomputers



6

Principles of Locality
 During an interval of execution, a set of data/instructions is 

repeatedly accessed (working set). (Denning, 70)

 temporal locality: data will be re-accessed timely.

 spatial locality: data stored nearby will be accessed.

 Similar working set observations in many other areas: 

 Law of scattering (‘34): significant papers hit core journals.

 Zipf’s law (‘49): frequently used words concentrate on 7%.

 80-20 rule (‘41) for wealth distribution: 20% own 80% total.

 Exploiting locality: identify/place working set in caches

 Large caches would never eliminate misses (Kung, 86) 

What can we do after misses?



7

Sequential Locality is Unique in Disks

 Sequential Locality: disk accesses in sequence fastest

 Disk speed is limited by mechanical constraints.

seek/rotation (high latency and power consumption) 

 OS can guess sequential disk-layout, but not always right.



8

Week OS Ability to Exploit Sequential Locality

 OS is not exactly aware disk layout 

 Sequential data placement has been implemented 

 since Fast File System in BSD (1984) 

 put files in one directory in sequence in disks

 follow execution sequence to place data in disks.

 Assume  temporal sequence = disk layout sequence. 

 The assumption is not always right, performance suffers.

Data accesses in both sequential and random patterns 

 an application accesses multiple files. 

Buffer caching/prefetching know little about disk layout.



9

IBM Ultrastar 18ZX Specification *

Seq. Read: 4,700 IO/s

Rand. Read:

< 200 IO/s

* Taken from IBM “ULTRASTAR 9LZX/18ZX Hardware/Functional Specification” Version 2.4

Our goal: to maximize opportunities of sequential 
accesses for high speed and high I/O throughput 



10

Randomly Scattered Disk Accesses

 Scientific computing

 Scalable IO (SIO) Report: “in many applications majority of the 

requests are for small amount  of  data (less than a few Kbytes)”  

[Reed 1997]

 CHARISMA Report: “large, regular data structures are 

distributed among processes with interleaved accesses of shared 

files” [Kotz 1996]

Workloads on popular operating systems

 UNIX: most accessed files are short in length (80% are smaller 

than 26 Kbytes ) [Ousterhout,1991]

Windows NT: 40% I/O operations are to files shorter than 

2KBytes [Vogels, 1999]



11

Random Accesses from Multiple Objects  

 Advanced disk arrays:

 HP FC-60 disk arrays: “Most workloads have a range of small and large 

jumps in sequential accesses and interferences between concurrent 

access streams”. [Keeton 2001]

 Detecting sources of irregular disk access patterns: “…, most data 

objects are much smaller than the disk request sizes needed to achieve 

good efficiency.” [Shindler 2002]

 Peta-Byte data analysis relies on random disk accesses:

 Many Peta-Bytes of active data for BaBar experiments 

 Data analysis: random analysis of small blocks. 

 A researcher has several hundred data streams in batch mode

 Several hundred concurrent researchers are active. 

 PetaCache (CalTech, 2004) is an expensive and temporary solution.



12

Existing Approaches and Limits 

 Programming for Disk Performance

 Hiding disk latency by overlapping computing

 Sorting large data sets (SIGMOD’97)

 Application dependent and programming burden

 Transparent and Informed Prefetching (TIP)

 Applications issue hints on their future I/O patterns  to guide 

prefetching/caching  (SOSP’99)

 Not a general enough to cover all applications

 Collective I/O:  gather multiple I/O requests

 make contiguous disk accesses for parallel programs



13

Our Objectives 

 Exploiting sequential locality in disks

 by minimizing random disk accesses

 making disk-aware caching and prefetching

 Application independent approach

 putting disk access information on OS map

 Exploiting DUal LOcalities (DULO):

 Temporal locality of program execution

 Sequential locality of disk accesses 



14

Outline 

What is missing in buffer cache management?

Managing disk layout information in OS

 DULO-caching

 DULO-prefetching

 Performance results in Linux kernel

 Summary



15

What is Buffer Cache Aware and Unaware?

I/O Scheduler

Disk Driver

Application I/O Requests

disk

Buffer cache

Caching & prefetching

 Buffer is an agent between I/O requests 

and disks.

 aware access patterns in time sequence (in a

good position to exploit temporal locality)

 not clear about physical layout (limited ability to 

exploit sequential locality in disks)

 Existing functions

 send unsatisfied requests to disks

 LRU replacement by temporal locality 

 make prefetch by sequential access assumption.   

 Ineffectiveness of I/O scheduler: sequential 

locality in is not open to buffer management.



16

 Minimizing cache miss ratio by only exploiting temporal locality

Sequentially accessed blocks  small miss penalty

Randomly accessed blocks  large miss penalty

Limits of Hit-ratio based Buffer Cache Management

penalty Miss   

  

 rateMisstimeHitrateHit

timeaccessAverage

Temporal 

locality
Sequential 

locality



17

X2

C

A

B
D

X1
X3X4

Disk Tracks

Hard  Disk Drive

Unique and critical roles of buffer cache

 Buffer cache can influence request stream patterns in disks

 If buffer cache is disk-layout-aware, OS is able to 

 Distinguish sequentially and randomly accessed blocks

 Give “expensive” random blocks a high caching priority

 replace long sequential data blocks timely to disks

 Disk accesses become more sequential.



18

• Prefetching may incur non-sequential disk access

– Non-sequential accesses are much slower than sequential accesses

– Disk layout information must be introduced into prefetching policies. 

Prefetching Efficiency is Performance Critical

Synchronous 

requests

Process

Disk

idle idle

Disk

Prefetch 

requests

Process

idle idle

It is increasingly difficult to hide disk accesses behind computation



19

File-level Prefetching is Disk Layout Unaware

• Multiple files sequentially allocated on disks cannot be 
prefetched at once.

• Metadata are allocated separately on disks, and cannot be 
prefetched

• Sequentiality at file abstraction may not translate to 
sequentiality on physical disk. 

• Deep access history information is usually not recorded.

File Z

File X
File Y

File R

A

B

C

D

Metadata of files XYZ



20

Opportunities and Challenges

With Disk Spatial Locality (Disk-Seen)

 Exploit DULO for fast disk accesses. 

 Make disks as a close part of the system for DISC. 

 Challenges to build Disk-Seen System Infrastructure

 Disk layout information is increasingly hidden in disks.

 analyze and utilize disk-layout Information

 accurately and timely identify sequential locality

 trade-offs between buffer cache hit ratio vs miss penalty

 manage its data structures with low overhead

 Implement it in OS kernel for practical usage



21

Disk-Seen Task 1: Make Disk Layout Info. Available

Which disk layout information to use?

 Logical block number (LBN): location mapping provided by firmware. 

(each block is given a sequence number)

 Accesses of contiguous LBNs have a performance close to accesses of 

contiguous blocks on disk. (except bad blocks occur)

 The LBN interface is highly portable across platforms.

 How to efficiently manage the disk layout information?

 LBN is only used to identify disk locations for read/write;

We want to track access times of disk blocks and search for access 

sequences via LBNs; 

 Disk block table:  a data structure for efficient disk blocks tracking. 



22

Disk-Seen TASK 2: Exploiting Dual Localities (DULO)

Staging Section

Evicting Section

Correlation Buffer

Sequencing Bank

LRU Stack

 Sequence Forming

Sequence ---- a number of blocks 

whose disk locations are adjacent and 

have been accessed during a limited 

time period. 

 Sequence Sorting based on its 

recency (temporal locality) and size 

(spatial locality)



23L=L1

Disk-Seen TASK 3: DULO-Caching

LRU Stack

Adapted GreedyDual Algorithm

 a global inflation value L , and  a value 
H for each sequence

 Calculate H values for sequences in 
sequencing bank:

H = L + 1 / Length( sequence )

Random blocks have larger H values

 When a sequence (s) is replaced,

L = H value of s .

L increases monotonically and make 
future sequences have larger H values 

 Sequences with smaller H values are 
placed closer to the bottom of LRU stack

H=L0+1

L=L0

H=L0+0.25

H=L0+1

H=L0+0.25



24

Disk-Seen TASK 3: DULO-Caching

LRU Stack

Adapted GreedyDual Algorithm

 a global inflation value L , and  a value 
H for each sequence

 Calculate H values for sequences in 
sequencing bank:

H = L + 1 / Length( sequence )

Random blocks have larger H values

 When a sequence (s) is replaced,

L = H value of s .

L increases monotonically and make 
future sequences have larger H values 

 Sequences with smaller H values are 
placed closer to the bottom of LRU stack

H=L1+1

H=L1+0.25

L=L1

H=L0+0.25

H=L0+1



25

DULO-Caching Principles

 Moving long sequences to the bottom of stack

 replace them early, get them back fast from disks 

 Replacement priority is set by sequence length.

 Moving LRU sequences to the bottom of stack

 exploiting temporal locality of data accesses

 Keeping random blocks in upper level stack

 hold them: expensive to get back from disks.



26

Disk-Seen Task 4: Identifying Long Disk Sequence
a data structure for tracking disk blocks

time1

Timestamps

time2

0

10

20

LBN: 5140 = 0*5122 +  10*512 + 20



27

9

7

10

3

8

= 9= 10

2

Disk-Seen Task 4: Identifying Long Disk Sequence
a new data structure for tracking disk blocks

= 7

1^

LBN : Block

N2

N3

N1

N4 8

8

= 8

9

9

10

10

^

^

4^



28

7

9

10

3

82

Disk-Seen Task 4: Identifying Long Disk Sequence
a new data structure for tracking disk blocks

1

9

9

4

10

10

Sequence

Not a 
sequence



29

15

17

162

Disk-Seen Task 4: Identifying Long Disk Sequence
a new data structure for tracking disk blocks

1

6

17

17

Continuously 
Accessed

Not 
Continuously 

Accessed

Not a 
Sequence 
(Lacking 
Stability)



30

Prefetch size: maximum number of blocks to be prefetched. 

Disk-Seen Task 5: DULO-Prefetching

LBN

Timestamp

Temporal 
window size

Spatial 
window size

Block initiating prefetching

Resident block

Non-resident block



31

What can DULO-Caching/-Prefetch do and not do?

 Effective to

 mixed sequential/random accesses. (cache them differently)

 many small files. (packaging them in prefetch)

 many one-time sequential accesses (replace them quickly).

 repeatable complex patterns that cannot be detected without disk info. 

(remember them)

 Not effective to

 dominantly random/sequential accesses. (perform equivalently to LRU)

 a large file sequentially located in disks. (file-level prefetch can do it)

 non-repeatable accesses. (perform equivalently to file-level prefetch)



32

DiskSeen: a System Infrastructure to Support

DULO-Caching and DULO-Prefetching

Prefetching 

area

Buffer Cache

Caching 

area

Destaging 

area

Disk

Block transfers 
between areas

DULO-Prefetching:

adj. window/stream

On-demand read:

place in stack top

DULO-Caching:

LRU blks and Long seqs.



33

The DiskSeen Prototype in Linux 2.6.11

 Use raw device file to prefetch blocks

 Linux file-level prefetching remains enabled

 Blocks without disk mappings are treated as random blocks

 Intel P4 3.0GHz processor, a 512MB memory, and Western 

Digital hard disk of 7200 RPM and 160GB

 The file system is Ext2. 



34

Benchmarks Programs To Test DULOs (1)

 BLAST: a tool searching databases to match nucleotide 

or protein sequences (mixed patterns)

 Data file: sequentially accessed

 Index and header files: randomly accessed

 PostMark: a file system benchmark of e-mail servers or 

news group servers (mixed patterns)

 Randomly select files and sequentially access each file

 Small files: random blocks; Large files: long sequences.

 LXR: a software serving user queries for searching, 

browsing, or comparing source code trees through an 

HTTP server. (mixed patterns, small files)



35

Benchmark Programs  to Test DULOs (2)

 TPC-H: a decision support benchmark 

 2 of the 22 queries are selected

 query #4: join two tables and large working sets (random patterns)

 query #6: table scan a large table (sequential access)

 diff: a tool comparing two files or directories. Compare two 

Linux kernel trees. (small files, random accesses)

 CVS: a versioning control system (small files, sequential 

accesses). 



36

Benchmark Programs to Test DULO (3)

 grep: search a set of files for lines containing a match to a 

given pattern (small files, sequential accesses).

 Strided: stridedly read a large file (1GB). Skip 4KB then read 

8KB in each period. (mixed patterns)

 Reverse: Read a large file (1GB) reversely. (sequential 

accesses)



37

DULO Caching does not affect Execution Times 

of  Pure Sequential or Random Workloads

TPC-H Query #6

(sequential accesses)

Diff

(random accesses)



39

DULO Caching Reduces Execution Times for 

Workloads with Mixed Patterns

PostMark

(mixed patterns of both sequential and random)



41

DULO Prefetching Reduces Execution Times for 

Workloads with Many Small Files 

0

20

40

60

80

100

120

grep cvs diff

E
x

e
c

u
ti

o
n

 T
im

e
 (

S
e

c
)

Linux 2.6.11

DULO



42

DULO Prefetching Reduces Execution Times for 

Workloads With Complex Access Patterns

0

20

40

60

80

100

120

strided reverse TPC-H(Q4)

E
x

e
c

u
ti

o
n

 T
im

e
 (

S
e

c
)

Linux 2.6.11

DULO



44

Conclusions

 Disk performance is limited by 

 Non-uniform accesses: fast sequential, slow random

 OS is unable to effectively exploit sequential locality.

 The buffer cache is a critical component for storage.

 temporal locality is mainly exploited by existing OS. 

 Building a Disk-Seen system infrastructure for

 DULO-Caching and -prefetching

 a system component for Data Intensive SuperComputer

 The size of the block table is 0.1% (4 K block) of disk 

capacity. Its working set can be in buffer cache.


