
Memory Thrashing Protection in

Multi-Programming Environment

Xiaodong Zhang

Ohio State University

In collaborations with

Song Jiang (Wayne State University)

Memory Management for Multiprogramming

 Space sharing among interactive programs in
virtual memory is managed by page replacement.

 Commonly used policy is the global LRU
replacement in the entire user memory space.

 Thrashing: accumulated memory requests of
multiple programs exceed available user space,

 No program is able to establish its working set;

 causing large page faults;

 low CPU utilization; and

 execution of each program practically stops.

Past and Existing Thrashing Protection Methods

 Local page replacement:

 Each program is statically allocated a fixed size.

 DEC VAX machine had this in its VMS in early 1980’s.

 Memory underutilization: not adapting dynamics.

 It is no longer used in any systems.

 Load control:

 While thrashing, some job(s) is/are suspended/swapped.

 Open BSD operating systems, IBM RS/6000, HP9000.

 HP-UX has a ``serialize()” command for thrashing.

 Linux makes load controls based on RSS (resident set
size) reporting the total number of occupied pages.

Limits and Problems of Load Controls

 A thrashing is often triggered by a brief spike of

memory demand, a load control can over-react.

 Suspending a job causes other related jobs to quit.

 When a job is suspended, its working set can be

replaced quickly by other running programs, very

expensive to rebuild the working set.

 A lightweight and dynamic protection is much

more desirable than a brute-force action.

Some Insights into Thrashing

 The global LRU replacement generates two types
of LRU pages for replacement:

 True LRU pages: to which programs do not need to
access.

 False LRU pages: to which programs have not been able
to access due to required working set is not set up yet, or
page faults are being conducted.

 A system cannot distinguish true or false LRU
pages, but selects both for replacement.

 The amount false LRU pages is a status indicator:
no, marginally, or seriously thrashing.

Token-based Thrashing Protection Facility

 Jiang/Zhang, Performance Evaluation, 05, (Ohio State).

 Conducted intensive experiments at the kernel level along

with analysis on memory thrashing:

 A sudden spike of memory demand from one can generate many

false LRU pages in others, particularly in an less demanding one.

 As false pages reach to a certain amount, the system becomes

little productive even when physical memory is not too small.

 Basic idea of the token mechanism:

 As the system enters a pre-thrashing stage (low RSS, and high

idle CPU), a token is issued to a process so that it can quickly

form its working set and proceed.

 This approach can effectively and timely avoid thrashing.

Some Alternatives in Its Implementation

 Which process to issue the token?

 A less memory demanding process.

 How long does a process hold the token?

 It is adjustable and proportional to the thrashing degree.

 What happens if thrashing is too serious?

 It becomes a polite load control mechanism by setting a
long token time so that each program has to be executed
one by one.

 Multi-tokens can be effective for light thrashing.

 The token and its variations were implemented and
tested in Linux kernel 2.2.

Outcome and Impact of This Work

 A paper entitled ``Token-ordered LRU: …” has been

rejected by several top system conferences. (Main reason:

this is not a hot OS topic anymore).

 A successful technology transfer based on it!

 A group of independent Linux kernel developers organized by

Rik van Reil of RedHat started a project to include the token into

the Linux kernel in July 2004.

 The implementation insights and detailed technical discussions

are well documented in the Internet.

 Token-ordered LRU, renamed as Swap token, was

formally adopted in Linux kernel 2.6.9, 12/04, serving

millions of users world wide.

Impact of This Work (continued)

 Swap token is introduced in book Understanding

Linux Kernel (3rd edition), (Bovet and Casati)

 Swap token is a section in Book Professional Linux

Kernel Architecture

 False LRU page concept is quoted in OS wiki.

 Continued efforts on adaptive swap token in kernel:

 Switch on/off the token adaptive to VM load changes.

 Other alternative proposed in the paper.

The Evolution of Swap Token in Linux

 First version: token is randomly given to a process

 A time stamp is used to handover the token one by one

 Limit 1: the token may not hit to the most desirable one

 Limit 2: a constant time stamp may not address urgency

 preempt swap token (current version)

 A “priority counter” is set for each process to record the

number of swap-out pages.

 The counter is incremented for a unit of swap-out pages

 The token is always to the process with high “priority”

 The length of time stamp varies by the priority degree

../../papers/token.pdf.pdf

