Memory Thrashing Protection In
Multi-Programming Environment

Xlaodong Zhang
Ohio State University

In collaborations with
Song Jiang (Wayne State University)

Memory Management for Multiprogramming

= Space sharing among interactive programs in
virtual memory Is managed by page replacement.

= Commonly used policy is the global LRU
replacement in the entire user memory space.

* Thrashing: accumulated memory requests of
multiple programs exceed available user space,
. No program is able to establish its working set;
. causing large page faults;
. low CPU utilization; and
. execution of each program practically stops.

Past and Existing Thrashing Protection Methods
= |_ocal page replacement:

. Each program is statically allocated a fixed size.

. DEC VAX machine had this in its VMS 1n early 1980’s.

. Memory underutilization: not adapting dynamics.

. Iti1s no longer used in any systems.
= |_oad control:

. While thrashing, some job(s) is/are suspended/swapped.
. Open BSD operating systems, IBM RS/6000, HP9000.
. HP-UX has a "“serialize()” command for thrashing.

. Linux makes load controls based on RSS (resident set
Size) reporting the total number of occupied pages.

Limits and Problems of Load Controls

= A thrashing is often triggered by a brief spike of
memory demand, a load control can over-react.

= Suspending a job causes other related jobs to quit.

= When a job Is suspended, its working set can be
replaced quickly by other running programs, very
expensive to rebuild the working set.

= A lightweight and dynamic protection is much
more desirable than a brute-force action.

Some Insights into Thrashing

= The global LRU replacement generates two types
of LRU pages for replacement:

. True LRU pages: to which programs do not need to
access.

. False LRU pages: to which programs have not been able
to access due to required working set Is not set up yet, or
page faults are being conducted.

= A system cannot distinguish true or false LRU
pages, but selects both for replacement.

= The amount false LRU pages Is a status indicator:
no, marginally, or seriously thrashing.

Token-based Thrashing Protection Facility

= Jiang/Zhang, Performance Evaluation, 05, (Ohio State).

= Conducted intensive experiments at the kernel level along
with analysis on memory thrashing:

. A sudden spike of memory demand from one can generate many
false LRU pages in others, particularly in an less demanding one.

As false pages reach to a certain amount, the system becomes
little productive even when physical memory is not too small.

= Basic idea of the token mechanism:

. As the system enters a pre-thrashing stage (low RSS, and high
Idle CPU), a token is issued to a process so that it can quickly
form its working set and proceed.

. This approach can effectively and timely avoid thrashing.

Some Alternatives In Its Implementation

= Which process to issue the token?
. A less memory demanding process.

= How long does a process hold the token?
. It Is adjustable and proportional to the thrashing degree.

= What happens if thrashing is too serious?

. It becomes a polite load control mechanism by setting a
long token time so that each program has to be executed
one by one.

= Multi-tokens can be effective for light thrashing.

* The token and Its variations were implemented and
tested In Linux kernel 2.2.

Outcome and Impact of This Work

= A paper entitled Token-ordered LRU: ...” has been
rejected by several top system conferences. (Main reason:
this i1s not a hot OS topic anymore).

= A successful technology transfer based on it!

. A group of independent Linux kernel developers organized by
Rik van Reil of RedHat started a project to include the token into
the Linux kernel in July 2004.

. The implementation insights and detailed technical discussions
are well documented in the Internet.
= Token-ordered LRU, renamed as Swap token, was
formally adopted in Linux kernel 2.6.9, 12/04, serving
millions of users world wide.

Impact of This Work (continued)

= Swap token is introduced in book Understanding
Linux Kernel (3rd edition), (Bovet and Casati)

= Swap token is a section in Book Professional Linux
Kernel Architecture

= False LRU page concept is quoted in OS wiki.

= Continued efforts on adaptive swap token in kernel:
. Switch on/off the token adaptive to VM load changes.
. Other alternative proposed in the paper.

The Evolution of Swap Token In Linux

= First version: token Is randomly given to a process
. A time stamp Is used to handover the token one by one
. Limit 1: the token may not hit to the most desirable one
. LImit 2: a constant time stamp may not address urgency

= preempt swap token (current version)

. A “priority counter” 1s set for each process to record the
number of swap-out pages.

. The counter Is incremented for a unit of swap-out pages
. The token 1s always to the process with high “priority”
. The length of time stamp varies by the priority degree

Version:

Architecture:

Cross-Referencing Linux

Linux/mm/thrash.c

| source navigation |
[dill markup |

[identifier search |

[freetext search |

| Lile search |

[1.0.9][L1213 1[2.040][2.2.26 1[2.4.18 1[2.420][2.428][2.6.10]

[2.6.11]

[i386] [alpha] [arm][ia64] [m68k][mips] [mips64][ppe][390][sh]

[sparc | [sparctd | [x86_64 |

-

¥ ¥ ¥ ¥ ¥ ¥ ¥ = ¥

Simple

*/f
#include
#include
#include
#include

unsigned

mm/thrash.c

Copyright (C) 2084, Red Hat, Inc.
Copyright (C) 2084, Rik wvan Riel <riel@redhat.com>
Released under the GPL, see the file COPYING for details.

token based thrashing protection, using the algorithm

described in: http://www.cs. wm.edu/~sjiang/token.pndf

dinux/jiffies.h
§1ndx?mm_5
1inux/sched. h
dinux/swap .k

static DEFINE SPINLOCKswap_ token_lock)
static unsigned lonzwap token timeout

longswap token check

struct mm struct * swap token mm= &init mm

#define s

#define 5

WAP TOKEN CHECK INTERVALHZ * 2)

WAP _TOKEN TINMEOQ

II."Jt

*f
unsigned

."rj

*/

* Currently disabled; MNeeds further code to work at HZI * 308.

longswap token default timeoux SWAP TOKEM TIMEQUT

* Take the token away if the process had no page faults
* in the last interval, or if it has held the token for
* too long.

#define SWAP TOKEN EMOUGH RS55l

#define SWAP TOKEN TIMED OUT

AR S R oA

I

static Tntghould release swap tokdstructmm struct *mm)

../../papers/token.pdf.pdf

