
The Ohio State University

High Performance Computing and Software Laboratory

BP-Wrapper: A System Framework Making Any

Replacement Alg. (Almost) Lock Contention Free

Xiaodong Zhang

The Ohio State University

In collaboration with

Xiaoning Ding

The Ohio State University

Song Jiang

Wayne State University

 Hit ratio is largely determined by

effectiveness of replacement algorithm

– It determines which pages to be kept and which to be evicted

– LRU-k, 2Q, LIRS, ARC, …

– Lock (latch) is required to serialize the update after each page request

Buffer Cache (Pool) is Critical for Data Intensive Workloads

2

Lock (Latch)

Replacement

Management

inside Lock

Buffer Pool (in DRAM)

Pages

Hard Disk

 Disk I/O is a major bottleneck

– One disk access takes millions of cycles

 Buffer cache (pool) keeps hot pages

– Maximizing hit ratio is the key

Page Accesses

Maximizing hit ratio

Lock Contention is a Serious Bottleneck

 Multi-processor/core systems make

transactions increasingly concurrent

Lock (Latch)

Replacement

Management

inside Lock

Buffer Pool (in DRAM)

Pages Page Accesses

Maximizing hit ratio

Hard Disk

Minimizing lock contention

 Lock contention delay accessing

buffer pool by more than an order

of magnitude

– Throughput reduced by two folds

 Due to lock contention, advanced

replacement of high hit ratios are

rarely adopted in practice

…

Accurate Algorithms and Their Approximations

4

…

…

LRU, LIRS, ARC, ….
Approximations

CLOCK (LRU), CLOCK-Pro (LIRS), CAR (ARC)

0
0

1

1

0

1
1

0 1
0

0

0

0

1
0

0

CLOCK

hand

1

• clock sets bit to 1 without lock for a page hit.

• Lock synchronization is only used only for misses.

• Clock approximation reduces lock contention at the price

of reducing hit ratios.

Distributed Locks are Not Applicable

Replacement Algorithm (modify data structures, etc.)

Buffer Pool

RA RA RA RA RA RA RA RA

Distributed Lock

Centralized Lock

 Another approximation due to partial access info.: lower hit ratios

 Some replacement algorithms require global information.

 The contention may not be evenly distributed among sub-locks;
5

6

Trade-offs between

Hit Ratios and Low Lock Contention

LRU-k, 2Q, LIRS,

ARC, SEQ, ….

……

……

for high hit ratio

Update page

metadata

Low Lock

Synchronization

CLOCK, CLOCK-Pro,

and CAR

for high scalability

?

 Clock-based approximations lower hit ratios (compared to original ones).

 The transformation can be difficult and demand great efforts;

 Some algorithms do not have clock-based approximations.

Our Goal: to have both!

Lock

Synchronization

modify data

structures

Outline

 Identifying critical issues in buffer pool management

– Where do we lose the accuracy?

– What are the sources of overhead?

 BP-Wrapper: an implementation framework for any

replacement algorithms in DBMS.

– Retain the accuracy of original algorithms

– Minimize the lock contention

– Design and analysis

 Performance evaluation

 Conclusion
7

 Buffer pool management with locks can be roughly

modeled by a M/M/1 model

 The probability of a contention event is Prob(q>=2)

What are the Overhead Sources in Buffer Pool Management

8

Lock requests Waiting Queue Critical section

2

__2








 

total

oprelacqlock

CPU
T

TT
N

NCPU:number of processors or computing cores

Tlock_acq_rel: the time to acquire a lock plus the time to release it.

Top: the time of atomic operations inside the lock.

Ttotal: Tlock_acq_rel + Top + average request interval time

Reduce the lock

frequency by

batching
Minimize the

latency of atomic

operations by

prefetching

BP-Wrapper: A Framework Making Any

Replacements (Almost) Lock Contention Free

Objectives:

 Do not require changes of existing replacement algorithms

 Retain the advantages of high hit ratios

 Replacement algorithms are as scalable as the clock-based approximations.

Our solutions

Updating hit request information in batch mode

− Each mutual exclusive operation correctly works for a group of hits

− Amortizing lock acquisition costs among a batch of page accesses

prefetching

− Pre-loading the to-be-used data inside locks to reduce holding time

9

Reducing Lock Contention by Batching Requests

Replacement Algorithm (modify data structures, etc.)

Buffer Pool

Replacement Algorithm (modify data structures, etc.)

Buffer Pool

One batch queue

per thread

10

Page hit

Fetch the page directly.

Fulfill page request

Commit page assess history

for replacement operations

Reducing Lock Contention by Batching Requests

Replacement Algorithm (modify data structures, etc.)

Buffer Pool

What operations before acquiring the lock for hits?

(1) Each access is recorded without a synchronization

(2) As the “hit batch queue” is full, Lock() is acquired

11

What operations inside the lock?

(1) Update the data structure for accumulated page accesses

(2) Release lock and empty the queue

What do we gain?

(1) The clock approximation is

eliminated: retain the hit ratio;

(2) Batching process of hits reduces

lock contention significantly.

Rationale behind Batching in DBMS

 Batching and fetching pages from buffer are done in parallel

 A small batching makes a huge impact on lock behavior

– Batch size (64 pages) vs. Buffer (1 million pages in 8GB memory)

– Lock frequency is reduced exponentially.

 The batching is independent of replacement algorithms

– No need to change original replacement algorithms

– Buffer pool is not partitioned, thus global information is preserved

– Access sequences are preserved

 Batching is applicable in buffer cache/pool management

– Page request is too fast to batch in virtual memory (VM)

– Management of VM and buffer cache are separated in Window

– The management of the two are connected in Linux

12

Amortized Lock Acquisition Cost

 Hardware: SGI Altix 350 SMP with 16 Itanium 2 processors;

 Software: postgreSQL 8.2.3

Workload: DBT-1 test kit (simulating TPC-W)

(Lock acquisition cost + lock holding time)

normalized over requests in a batch

T
im

e
 (

m
ic

ro
s
e
c
o
n
d
)

12 times

Reducing Lock Holding Time by Prefetching

14

Time

Thread 2

Thread 1

Data Cache

Miss Stall

Time

Thread 2

Thread 1

Pre-read data that

will be accessed in

the critical section

Rationale behind Prefetching Technique

 Why not prepare to-be-used data outside critical section?

– The data is unique for replacement , and would not be used outside lock

– Prefetched data will be invalidated when it is changed by other threads

– Prefetching is independent of replacement algorithm

 What to be prefetched?

– Data touched by each replacement operation

• Easy to determine because the operations are well structured

 Prefetching can shorten lock holding time by over 70%

15

 1996-2000: LRU (suffer lock contention moderately due to

low concurrency)

 2000-2003: LRU-k (hit ratio outperforms LRU, but lock

contention became more serious)

 2004: ARC/CAR are implemented, but quickly removed

due to an IBM patent protection.

 2005: 2Q was implemented (hit ratios were further

improved, but lock contention was high)

 2006 to now: CLOCK (approximation of LRU, lock

contention is reduced, but hit ratio is the lowest compared

with all the previous ones)

History of Buffer Pool's Caching Management in PostgreSQL

16

Performance Evaluation

 Hardware architecture:

– SGI Altix 350 SMP with 16 Itanium II processors

– Dell PowerEdge 1900 Server (two quad-core Xeon X5355

processors)

 DBMS and system environment:

– PostgreSQL 8.2.3 + Linux Red Hat Enterprise Linux AS;

Workloads

– DBT-1 (simulating TPC-W) from OSDL database test suite;

– DBT-2 (simulating TPC-C) from OSDL database test suite;

– TableScan: each transaction sequentially scan a table of

800,000 rows (128-byte)

17

 Tested policies

 Experiments

– Experiments on database scalability

• Increasing the number of CPU/Cores used, and measuring throughput

• Use large buffer to hold whole working sets (hits only)

• With BP-Wrapper, 2Q can be as scalable as CLOCK (same throughout)

• Lock contention is minimized

– Experiments on overall performance

• Increasing the buffer pool size with fixed system scale (8 cores)

• Buffer is not as large to hold whole working set

– Causing misses

• With BP-Wrapper, 2Q outperforms CLOCK

• The advantage of high hit ratio of 2Q is retained.

Experiment Setup in PostgreSQL

18

Queue

size: 64

Reduction of Lock Contention (SGI Altix 350, DBT-1, no misses)

19

Lock contention: a lock cannot be obtained without blocking;

Number of lock acquisitions (contention) per million page accesses.

Reduced

by over

7000 times!

Improving Throughput by lock contention reduction

(DBT-1, no misses)

20

SGI Altix 350

(16 Itaniums)

Poweredge 1900

(two quad-core Xeon)

1.5 Times Improve in Throughput

21

SGI Altix 350

(16 Itaniums)

Poweredge 1900

(two quad-core Xeon)

Improvement of Throughput (DBT-2, no misses)

1.3 Times Improve in Throughput

22

SGI Altix 350

(16 Itaniums)

Poweredge 1900

(two quad-core Xeon)

Improvement of Throughput (TableScan, no misses)

2.0 Times Improve in Throughput

Benefits from both High Hit Ratio and Low Lock Contention

(PowerEdge 1900, DBT-1, #processors = 8)

23

Hit Ratio Normalized Throughputs

High hit ratio

is preserved

Higher hit ratio 

higher throughput

Less contention

higher throughput

24

Benefits from both High Hit Ratio and Low Lock Contention

(PowerEdge 1900, DBT-2, #processors = 8)

Hit Ratio Normalized Throughputs

Higher hit ratio 

higher throughput

Less contention

higher throughput

25

Summary

 A 40+ year classical problem to address trade-off between

– high hit ratios in buffer pool (by advanced algorithms) and

– Low lock contention (by implementation approximations)

 Current system architecture demands both

– high hit ratio to reduce increasingly high disk access latency

– Low lock contention to accommodate increasingly more concurrent

transactions served by multiprocessors/cores

 BP-Wrapper can achieve both performance goals by

– Batching the hit requests (retain the accuracy of original algorithms)

– Prefetching needed data (minimize the latency in critical sections)

 We hope BP-Wrapper turns a new chapter in PostgreSQL’s

history of buffer pool replacement.

